

MANONMANIAM SUNDARANAR UNIVERSITY TIRUNELVELI – 12

MODIFIED AND CORRECTED SYLLABUS (RECEIVED FROM CHAIRPERSON ON 13.10.2023.)

M.Sc NANO SCIENCE AND NANO TECHNOLOGY

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

FROM THE ACADEMIC YEAR 2023 – 2024

The preamble of the syllabus

Nanoscience is the study of systems in nanoscale and nanotechnology is the ability to systematically organize and manipulate properties and behavior of matter in the atomic and molecular levels. Nanotechnology is the application of nanoscience leading to the use of new nanomaterials and nanosize components in useful products. These newborn scientific disciplines are situated at the interface between physics, chemistry, materials science, microelectronics, biochemistry, and biotechnology and engineering. Through nanoscience and nanotechnology it has become possible to study and create very useful functional devices, materials and systems on the 1 to 100 nanometer (one billionth of a meter) length scale. The reasons why nanoscale has become so important are presented. Nanotechnology will eventually provide us with the ability to design custom-made materials and products with new enhanced properties, new nanoelectronics and biological systems, nanodevices, nanorobotics, nanocomputers, nanopowders, nanostructured catalysts and nanoporous materials, molecular manufacturing, nanolayers, molecular nanotechnology, medicine such as Alzheimer's and cancer prediction, prevention and treatment through nanotechnology, nanobiology, organic nanostructures to name a few.

Master of Science (M.Sc.) in Nanoscience and Nanotechnology, the curricula, and course content were designed to meet the standards of UGC-CSIR (NET) and (SLET) examinations. The choice- based credit system of learning develops a strong base in the core subject and specializes in the disciplines of his / her liking and abilities and develops an in-depth understanding of various aspects of Biotechnology. The students develop experimental skills, design, and implementation of novel synthetic methods, and develop the aptitude for academic and professional skills, by acquiring basic concepts for structural elucidation with hyphenated techniques, and understanding the fundamental biological process and rationale of the computer. The project introduced in the curriculum will motivate the students to pursue research and entrepreneurial skill development.

MEDIUM OF INSTRUCTION AND EXAMINATION

The medium of instruction as well as examination will be in English.

THEORY EXAMINATION

The external evaluation will be based on the examination to be conducted by the university at the end of each semester.

PRACTICAL EXAMINATION

Practical examinations will be conducted at the end of each semester.

Evaluation

A. Each paper carries an internal component

B. There is a pass minimum of 50% for P.G. external and overall components

Theory External: Internal Assessment = 75:25

Practical External: Internal Assessment = 50:50

C. Internal Assessment

Internal marks for Theory shall be allocated in the following manner.

The average of the best two tests from three compulsory tests	15 Marks
Seminar	05 Marks
Assignment/ Model Making /Quiz	05 Marks
Total	25 Marks

Note: Each test will be of one hour duration.

E. External Assessment

External marks distribution

Section A: 10x 1 = 10 marks (Q.No. 1 to 10) Section B:05 x 5 = 25 marks (Q.No. 11 to 15) Section C: 05 x 8 = 40 marks (Q.No. 16 to 20)

D. Practical

Core Practical Examination having the following marks:

Internal – 50 marks	External – 50 marks
Major Practical = 15 marks	Major Practical = 15 marks
Minor Practical = 10 marks	Minor Practical = 10 marks
Spotters (A, B, C, D & E) 5 x 3 = 20 marks	Spotters (A, B, C, D & E) 5 x 3 = 15 marks
Observation Note book or Record note = 05 marks	Observation Note book or Record note = 05 marks
Viva voce – 05 marks	Viva voce – 05 marks
Total – 50 marks	Total – 50 marks

Passing minimum of 50% for external and overall components

E: Project work

Internal – 50 marks	External – 50 marks
Tota	al Marks - 100

Distribution of Marks in Project Course

Internal	50 marks
External Project m	nark distribution
Project report	30 marks
Presentation	10 marks
Viva voce	10 marks
Total	100 marks

Note:

i) Student should carry out INDIVIDUAL PROJECTS only

ii) Project shall be allotted at the beginning of the IV semester.

iii) Students may be allowed to carry out the project work in other research institutes.

iv) Faculty members of the respective colleges must serve as guides

v) Project report evaluation will be done and Viva-voce will be conducted by both the external examiner and the internal examiner at the end of the FOURTH SEMESTER itself.

vi) Project report in THREE copies has to be submitted at the time of the exam.

vii) Evaluation of Project report has to be done by the examiner(s) appointed by the University for 50 Marks.

viii) Special weightage may be given for the students who publish their research work in recognised journal including online.

H. INTERNSHIP

To strengthen and elevate the professional skills of students, Internship (Part Time/ Full Time) is incorporated with 2 credits (3 Hours / Cycle) in Fourth semester.

Evaluation

Student shall submit their report (Minimum of 15 pages focusing internship, excluding front page, declaration, certificate etc.) individually.

Internship work

	al Marks - 100
Internal – 50 marks	External – 50 marks

Distribution of Marks in Internship Course

Internal	50 marks		
External internship	mark distribution		
Internship report	25 marks		
Presentation	15 marks		
Viva voce	10 marks		
Total	100 marks		

OPEN ONLINE COURSE

The student shall undertake an optional career-based Open online course in this course from an UGC approved MOOC platform (e-PG Pathshala/Swayam etc.) during the fourth semester and submit the Certificate at the end of the fourth semester.

Regarding Online courses are concerned, full liberty is given to the students for the selection of the course. Staff can assist the students in selection of course according to the potential of students.

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR POSTGRADUATE EDUCATION					
Programme	M.Sc., Nano Science & Nanotechnology				
Programme Code					
Duration	2 years for PG				
Programme	PO1: Problem Solving Skill				
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to				
	solve business problems through research in Global context.				
	PO2: Decision Making Skill				
	Foster analytical and critical thinking abilities for data-based decision-making.				
	PO3: Ethical Value				

	Ability to incorporate quality, ethical and legal value-based
	perspectives to all organizational activities.
	PO4: Communication Skill
	Ability to develop communication, managerial and interpersonal skills.
]	PO5: Individual and Team Leadership Skill
	Capability to lead themselves and the team to achieve organizationalgoals.
]	PO6: Employability Skill
	Inculcate contemporary business practices to enhance employabilityskills in
	the competitive environment.
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
]	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
]	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and a global
	perspective.
]	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.

Programme	PSO1 – Placement					
Specific Outcomes	To prepare the students who will demonstrate respectful engagement with					
(PSOs)	others' ideas, behaviors, beliefs and apply diverse frames of reference to					
	decisions and actions.					
	PSO 2 - Entrepreneur					
	To create effective entrepreneurs by enhancing their critical thinking, problem					
	solving, decision making and leadership skill that will facilitate startups and high					
	potential organizations.					
	PSO3 – Research and Development					
	Design and implement HR systems and practices grounded in research that					
	comply with employment laws, leading the organization towards growth and					
	development.					
	PSO4 – Contribution to Business World					
	To produce employable, ethical and innovative professionals to sustain in the					
	dynamic business world.					
	PSO 5 – Contribution to the Society					
	To contribute to the development of the society by collaborating withstakeholders					
	for mutual benefit.					

Template for P.G., Programmes

Semester-I	Credit	Hours	Semester-II	Credit	Hours	Semester-III	Credit	Hours	Semester-IV	Credi t	Hours
1.1. Core-I	5	7	2.1. Core-IV	5	6	3.1. Core-VII	5	6	4.1. Core-XI	5	6
1.2 Core-II	5	7	2.2 Core-V	5	6	3.2 Core-VII	5	6	4.2 Core-XII	5	6
1.3 Core – III	4	6	2.3 Core – VI	4	6	3.3 Core – IX	5	6	4.3 Project with viva voce	7	10
1.4 Discipline Centric Elective -I	3	5	2.4 Discipline Centric Elective – III	3	4	3.4 Core – X	4	6	4.4Elective-VI(Industry/Entrepreneurship)20%Theory80%Practical	3	4
1.5 Generic Elective-II:	3	5	2.5 Generic Elective -IV:	3	4	3.5 Discipline Centric Elective – V	3	3	4.5 Skill Enhancement course / Professional Competency Skill	2	4
			2.6 NME I	2	4	3.6 NME II	2	3	4.6 Extension Activity	1	
						3.7 Internship/ Industrial Activity	2	-			
	20	30		22	30		26	30		23	30
					Total C	redit Points -91					

Part	List of Courses	Credits	No. of Hours
	Core – I	5	7
	Core – II	5	7
	Core – III	4	6
	Elective – I	3	5
	Elective – II	3	5
		20	30

Semester-II						
Part	List of Courses	Credits	No. of			
			Hours			
	Core – IV	5	6			
	Core – V	5	6			
	Core – VI	4	6			
	Elective – III	3	4			
	Elective – IV	3	4			
	Skill Enhancement Course [SEC] – I	2	4			
		22	30			

Second Year – Semester – III

Part	List of Courses	Credits	No. of Hours
	Core – VII	5	6
	Core – VIII	5	6
	Core – IX	5	6
	Core (Industry Module) – X	4	6
	Elective – V	3	3
	Skill Enhancement Course – II	2	3
	Internship / Industrial Activity [Credits]	2	-
		26	30

	Semester-IV						
Part	List of Courses	Credits	No. of Hours				
	Core – XI	5	6				
	Core – XII	5	6				
	Project with VIVA VOCE	7	10				
	Elective – VI (Industry Entrepreneurship)	3	4				
	Skill Enhancement Course – III / Professional Competency Skill	2	4				
	Extension Activity	1	-				
		23	30				

Total 91 Credits for PG Courses

M.Sc., Nano science and Nano Technology

Course status	Course Title	Credits	Hours
Core-1	Introductory Physics	4	7
Core -2	Introductory Chemistry	4	7
Core-3	Introductory Biology	4	6
Elective - I	Introduction to Material Science	3	3
Elective - II	A. Laboratory Safety and HealthB. Intellectual Property Rights.	2	3
	C. Innovation and Entrepreneurship		
	Nanoscience Practical-I	4	4
	Total	21	30

SEMESTER - I

SEMESTER - II

Course status	Course Title	Credits	Hours			
Core 4	Introduction to Nanoscience and Nanotechnology	4	6			
Core 5						
Core 6	Core 6 Characterization Techniques of Nanomaterials –I					
Elective III	Introduction to Nanotoxicology	3	3			
Elective IV	Nanobiotechnology	3	3			
Practical	Nanoscience Practical – II	4	4			
	Skill Enhancement Course [SEC] - I NME	2	2			
	Total	24	30			

SEMESTER - III

Course status	Course Title	Credits	Hours			
Core 7	ore 7 Nanoelectronics and Nano sensors					
Core 8	Properties of Nanomaterials	4	5			
Core 9	Characterization Techniques of Nanomaterials-II	4	5			
Core 10	Advanced Nanomaterials for Nanotechnology	4	4			
Elective V	Elective V Biomaterials and Nanobiotechnology for Tissue Engineering					
Practical	Nanoscience Practical – III	3	4			
	Skill Enhancement Course – II	2	3			
	Internship / Industrial Activity	2	-			
	Total	26	30			

SEMESTER - IV

Course status	Course Title	Credits	Hours	
Core 11	4	6		
Core 12	4	6		
Project	7	10		
Elective VI	Nanotechnology for Food and Agriculture	3	4	
	Skill Enhancement Course – III / Professional Competency Skill	2	4	
	Extension Activity	1	-	
	Total	21	30	

Total Credits – 92; Total hours – 120 h

SEMESTER I CORE I

Course Code	Course Name: PHYSICS	INTRODUCTORY	Credits 4		
Lecture Hours: (L) per week	Tutorial Hours: (T) per week	Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week		
Course Category: Core I	Year & Semester:	Admission Year:			
Pre requisite:	Basic knowledg physics.	ge with concepts of			
Learning Objectives:	The main objectives of this course are to: To understand fundamental concepts of electromagnetic waves, current, magnetism, electronics and quantum mechanics. To gain knowledge on electronic devices such as diodes and transistors also quantum mechanics				

CLO1	To understand fundamental concepts of physics which are necessary for nanoscience and technology subject
CLO2	To apply the gained subject knowledge to understand the nano-enabled devices in second and third semesters
CLO3	To evaluate microscopic scales with macroscopic Impact with the help of Physics.
CLO4	To understanding on real time applications of physics
CLO5	To analyze the acquired knowledge and understanding on real time applications of physics
Recap:	2 Tutorial hours
Contents an	d Required hours: (Total =90 hours)

Unit:1 WAVES AND OPTICS

Electromagnetic waves and their characteristics – Theories of light –Wave, Electromagnetic and Quantum – Scattering of light: Rayleigh's and Tyndal scattering – Huygen's principle – Interference – Diffraction – Polarization of light waves

18 hours

Unit:2 ELECTRIC CURRENT	18 hours
Electric Current - Flow of Charges in Metals - Drift Velocity, M	obility and Their Relation –
Ohm's Law: Electrical Resistance - I-V Characteristics - Res	istivity and Conductivity -
Superconductivity – Joule's Heating Effect – Thermoelectric Effe	ects: Seebeck and Peltier
Effect.	

Unit:	3	MAGNETISM		18 hours	
Funda	amental (Concepts of Magnetism– Bohr Magneton- Magnet	etic Dipol	es- Field- Electr	ron
Spin	and Mag	netic Moment- Magnetic moment due to Nuclea	ır Spin- N	Aagnetic dipoles	s-
Perme	eability- N	Magnetization- Intensity of Magnetization – Magnetization	etic Materi	ials	
Unit:	4	ELECTRONICS		18 hours	
Class	ification of	of Solids, Energy Levels, Intrinsic and Extrinsic S	emicondu	ctor, Conductior	n
In Me	etals and S	Semiconductors. Diode Under Forward and Revers	se Bias - T	Fransistor Basics	5,
Work	ing Princ	iples – Current-Voltage Characteristics			
Unit:	5	QUANTUM MECHANICS		18 ho	our
De-B	roglie wa	velength: in terms of energy and potential – Schrö	dinger tin	ne dependent	
equat	ion – Tir	ne independent equation – Applications of Schrö	dinger wa	ave equation – (On
dimer	nsional ha	armonic oscillator: Eigen values of the total energy	v – Particle	e in a one	
dimer	nsional bo	DX.			
		TOTAL LECTURE HOURS		90 ha	our
Text	Book(s)				
1		ate Physics, S.O. Pillai, 4 th Ed, New Age Internatio	nal Publis	shers (2001).	
2		ction To Solid-State Physics, C. Kittel, Wiley (1986			
3		sm: Principles and Applications, D. Craik, Wiley (
4		ook of Quantum Mechanics, P. M. Mathews and K		esan, Tata	
	McGrav	v-Hill, (1978)			
5	Quantur	n Mechanics: Theory and Applications, Ajoy Ghata	ak, and S.	Lokanathan,	
	Springer	r (2004)			
Refer	rence Boo	ok(s)			
1.	Text Bo	ok Of Electronics, S. Chattopadhyay, New Central	Book Ag	ency pyt. Ltd.	
	(2006).				
2.	、 <i>,</i>	c Materials : Fundamentals And Applications by N	Vicola A. S	Spaldin,	
		lge University Press, 2nd Edition, (2018)		I · · · · ·	
	1				
Relat	ed Onlin	e Contents [MOOC, SWAYAM, NPTEL, Webs	ites etc.]		
1		: Electromagnetism			
		ptel.ac.in/courses/115/106/115106122/			
2	-	: Magnetic Properties			
		vww.youtube.com/watch?v=QQZ6EGf0Ju8			
3	-	: Quantum Mechanics			
-		ptel.ac.in/courses/115/101/115101107/			

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to Pos	3	2	3	3	3

SEMESTER I

CORE-II

Course Code	Course Name: CHEMISTRY	INTRODUCTORY	Credits: 4			
Lecture Hours: (L) per week	Tutorial Hours: (T) per week	Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week:			
Course Category:	Year & Semester:	Admission Year:				
Pre requisite:	Basic knowledg Chemistry	ge with concepts of				
Learning Objectives:	The main objectives of this course are to: To understand fundamental concepts of electromagnetic current, magnetism, electronics and quantum mechanics. To gain knowledge on electronic devices such as diodes and transistor quantum mechanics					

CLO1	1. Define and identify differential branches of chemistry and their importance
CLO2	2. Understand and describe chemical concepts and processes
CLO3	3. Interpretation and application of the theories to chemical process and derivations.
CLO4	4. Differentiate different properties and mechanisms of organic reactions, inorganic properties and physical concepts
CLO5	5. Evaluation and assessment of the theories and chemical process fordifferent applications.
Recap:	2 Tutorial hours

	Units
I (18 h)	Chemical Equilibria - Activity Concept, Equilibrium Constant and
	Applications, Ionisation Constants of Acids and Bases. Concept Of pH,
	Hydrolysis of Salts.
II (18 h)	Buffers – Types, Range and Capacity, Dissociation of Polyprotic Acids,
	Common Ion Effect, Salt Effect. Electrochemistry – Conductivity o f
	Electrolytes, Electrochemical Cells, Standard Electrode Potentials
III (18 h)	Symmetry And Group Theory, Bonding Models in Chemistry – Ionic
	Bond, Covalent Bond, Coordination Chemistry - Theories of Bonding in
	Coordination Compounds and Electronic Spectra of Coordination
	Compounds
IV (18 h)	Thermodynamics: First, Second and Third Law of Thermodynamics.
	Gibbs And Helmholtz Energy and Chemical Equilibrium. Chemical
	Kinetics, Transition State Theory and Collision Theory,
	Heterogeneous Catalysis.

	8							
V (18 h)	Organic Compounds – Structure and Bonding, Aliphatic and Aromatic							
	Compounds, Functional Groups, Nucleophiles and Electrophiles,							
	Reactions and Mechanisms							
Reading	1. Fundamentals Of Analytical Chemistry - Skoog, West and Holler,							
List(Printand	Saunders College, Publishing, VII Ed, (1996).							
Online)	2. Text Book Of Quantitative Inorganic Analysis – A.I. Vogel, Elbs,							
	IVEd., (1985).							
	3. Physical Chemistry, A. Alberty And R.J. Silbey							
Recommended	1. Inorganic Chemistry: Principles of Structure and Reactivity – J.E.							
Texts	Huheey, E.A. Keiter and R.L. Keiter, IVEd.							
	2. Physical Chemistry, Atkins							
	3. Text Book Of Quantitative Chemical Analysis – A.I. Vogel, VI							
	Ed, Pearson Education Ltd, 2001							

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low – 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

SEMESTER I CORE-III

Course Code	Course Name: IN BIOLOGY	Credits: 4							
Lecture Hours:	Tutorial Hours:	Lab practice Hours: (P) per	Total: (L+T+P)						
(L) per week	(T) per week	week	Hours per week						
Course Category:	Year &	Admission Year:							
	Semester:								
Pre requisite:	Basic knowledge with concepts of								
	Biology								
Links to other									
Courses									
Learning	The main objective	es of this course are to:							
Objectives:	1. Acquire the kn	owledge of the cell biology a	nd application.						
	2. Explaining the	role of cell organelles, metab	olism, and bioenergetics.						
	3. Understanding	the about the morphology, st	ructure, of DNA, RNAand						
	different types of a	nucleic acid.							
	4. Gaining the kn	owledge about of glucose, an	d fatty acid metabolism.						
	5. Evaluation and comparison of the different enzyme role energy								
	production.								
		Units							
Ι	CELL STRUC	FURE AND FUNCTIONS							
	Definitions, Types, Eukaryotic and Prokaryotic cells, Principle of								
	membrane organization, Cytoskeletal proteins, Types of cell division								
	Mitosis and Meiosis.								
II	PROTEINS								
	Structure and functions of proteins, Amino acids and peptides, Proteins								
	Primary, Secondary, Tertiary, and Quaternary structures, Protein folding								
	hemoglobin and myoglobin.								
III	ENZYMES	<u>jogiooni.</u>							
	Mechanism of actions, Enzyme kinetics, Regulation of activities								
	Bioenergetics, Role of ATP, Biological oxidation, Respiratory chain and								
	oxidative phosphorylation								
IV									
1 V	METABOLISOM Overview of metabolism and estabolism Carbohydrates Pielogies								
	Overview of metabolism and catabolism, Carbohydrates, Biologica								
		significance, Glycolysis, Lipids of physiological significance, Cholesterol,							
	Synthesis, Transport and Excretion, Glycoproteins and Extracellular matrix, Biooxidation, Fatty acid synthesis, Phospholipids and Membranes								
V									
¥	<u>NUCLEIC ACIDS</u> Structure functions and replications of information macromolecules								
	Structure, functions and replications of information macromolecules								
	Metabolism of purines and pyrimidine nucleotides.								
	Organization, replication and repair of DNA. RNA and protein synthesis.								
Recommen	1 6	Principles of Biochemistry,	Cox and Nolson						
ded Texts		i multiples of biochemistry,	COX and meison,						
ucu 1 tx18	VEdn,2008 2. L. Stryer, Biochemistry, 4 th Edn., 1995								
			Murray DK Granner and						
	3. Haper's Illustrated Biochemistry, R.K, Murray, D.K. Granner and V.W.Rodwell, McGraw Hill, New Delhi, 2003.								
	V.W.KOOW	in, McGraw Hill, New Delh	1, 2003.						

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Mapping with Programme Outcomes

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

To understand fundamental concepts of crystal structure and deference To gain knowledge on various properties such as electrical, magnetic, there optical andmechanical properties of materials Expected Course Outcomes: On the successful completion of the course, student will be able to: 1 To understand the fundamental concepts of material science 2 To apply the gained subject knowledge to understand the advanced concepts of nanoscience in second and third semesters 3 To evaluate impact of presence of impurity and applied temperature on various properties of materials. 4 To analyze the acquired knowledge and understanding on real time applications of various functional materials Unit:1 CRYSTAL STRUCTURE AND DEFECTS 18 hout Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects.	Course	e Code	Course Name: Science	Introductions To Materials	Credits 3					
Semester: Semester: Pre requisite: Basic knowledge with concepts of solid state physics Links to other courses Image: Solid state physics Learning Objectives: The main objectives of this course are to: To understand fundamental concepts of crystal structure and deft To gain knowledge on various properties such as electrical, magnetic, there optical and mechanical properties of materials Expected Course Outcomes: On the successful completion of the course, student will be able to: 1 To understand the fundamental concepts of material science 2 To apply the gained subject knowledge to understand the advanced concepts of nanoscience is second and third semesters 3 To evaluate impact of presence of impurity and applied temperature on various properties of materials. 4 To analyze the acquired knowledge and understanding on real time applications of various functional materials Unit:1 CRYSTAL STRUCTURE AND DEFECTS 18 hot Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. Unit:2 ELECTRICAL PROPERTIES 18 hot Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band Concept of Effective Mass of Electron and Hole – Band Concept of Effect of	per we	ek	Hours: (T) per week							
solid state physics Links to other courses Learning Objectives: The main objectives of this course are to: To understand fundamental concepts of crystal structure and deft To gain knowledge on various properties such as electrical, magnetic, ther optical andmechanical properties of materials Expected Course Outcomes: On the successful completion of the course, student will be able to: 1 To understand the fundamental concepts of material science 2 To apply the gained subject knowledge to understand the advanced concepts of nanoscience in second and third semesters 3 To evaluate impact of presence of impurity and applied temperature on various properties of materials. 4 To analyze the acquired knowledge and understanding on real time applications of various functional materials Unit:1 CRYSTAL STRUCTURE AND DEFECTS 18 hot Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. 18 hot Urigin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band O Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. 18 hot Unit:3 MAGNETIC PROPERTIES	Course	e Category:		Admission Year:						
Learning Objectives: The main objectives of this course are to: To understand fundamental concepts of crystal structure and define optical andmechanical properties such as electrical, magnetic, there optical andmechanical properties of materials Expected Course Outcomes: Image: Course outcomes: On the successful completion of the course, student will be able to: Image: Course outcomes: 1 To understand the fundamental concepts of material science 2 To apply the gained subject knowledge to understand the advanced concepts of nanoscience in second and third semesters 3 To evaluate impact of presence of impurity and applied temperature on various properties of materials. 4 To analyze the acquired knowledge and understanding on real time applications of various functional materials Unit:1 CRYSTAL STRUCTURE AND DEFECTS 18 hot Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. Unit:2 ELECTRICAL PROPERTIES 18 hot Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band Oc Petermination – Electrical Conductivity – Activation Energy – Carrier Concentration of Hall Coefficient. Unit:3 MAGNETIC PROPERTIES 18 hot Magnetic Mater	Pre rec	quisite:	U	1						
To understand fundamental concepts of crystal structure and defa To gain knowledge on various properties such as electrical, magnetic, ther optical andmechanical properties of materials Expected Course Outcomes: Image: Construction of the course, student will be able to: 1 To understand the fundamental concepts of material science 2 To apply the gained subject knowledge to understand the advanced concepts of nanoscience in second and third semesters 3 To evaluate impact of presence of impurity and applied temperature on various properties of materials. 4 To analyze the acquired knowledge and understanding on real time applications of various functional materials Unit:1 CRYSTAL STRUCTURE AND DEFECTS 18 hot Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. 18 hot Unit:2 ELECTRICAL PROPERTIES 18 hot Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band O Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. 18 hot Unit:3 MAGNETIC PROPERTIES 18 hot Magnetic Materials – Dia, Para, Ferro, Anti-Fe	Links (to other courses								
To gain knowledge on various properties such as electrical, magnetic, theroptical andmechanical properties of materials Expected Course Outcomes: On the successful completion of the course, student will be able to: 1 To understand the fundamental concepts of material science 2 To apply the gained subject knowledge to understand the advanced concepts of nanoscience in second and third semesters 3 To evaluate impact of presence of impurity and applied temperature on various properties of materials. 4 To analyze the acquired knowledge and understanding on real time applications of various functional materials Unit:1 CRYSTAL STRUCTURE AND DEFECTS 18 hot Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. Unit:2 ELECTRICAL PROPERTIES 18 hot Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band C Determination – Electrical Conductivity – Activation Energy – Carrier Concentration of Hall Coefficient. Unit:3 MAGNETIC PROPERTIES 18 hot Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation	Learni	ng Objectives:	The main objectives of this course are to:							
On the successful completion of the course, student will be able to: 1 To understand the fundamental concepts of material science 2 To apply the gained subject knowledge to understand the advanced concepts of nanoscience in second and third semesters 3 To evaluate impact of presence of impurity and applied temperature on various properties of materials. 4 To analyze the acquired knowledge and understanding on real time applications of various functional materials Unit:1 CRYSTAL STRUCTURE AND DEFECTS 18 hot Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. Unit:2 ELECTRICAL PROPERTIES 18 hot Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band C Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. Unit:3 MAGNETIC PROPERTIES 18 hot Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of			To gain knowled	ge on various properties such as	•					
1 To understand the fundamental concepts of material science 2 To apply the gained subject knowledge to understand the advanced concepts of nanoscience in second and third semesters 3 To evaluate impact of presence of impurity and applied temperature on various properties of materials. 4 To analyze the acquired knowledge and understanding on real time applications of various functional materials Unit:1 CRYSTAL STRUCTURE AND DEFECTS 18 how Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. Unit:2 ELECTRICAL PROPERTIES 18 how Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band O Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. Unit:3 MAGNETIC PROPERTIES 18 how Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization – Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of	Expecte	ed Course Outcon	nes:							
2 To apply the gained subject knowledge to understand the advanced concepts of nanoscience in second and third semesters 3 To evaluate impact of presence of impurity and applied temperature on various properties of materials. 4 To analyze the acquired knowledge and understanding on real time applications of various functional materials Unit:1 CRYSTAL STRUCTURE AND DEFECTS 18 hot Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. Unit:2 ELECTRICAL PROPERTIES 18 hot Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band C Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. 18 hot Unit:3 MAGNETIC PROPERTIES 18 hot Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of	On the s	successful completi	ion of the course,	student will be able to:						
2 To apply the gained subject knowledge to understand the advanced concepts of nanoscience in second and third semesters 3 To evaluate impact of presence of impurity and applied temperature on various properties of materials. 4 To analyze the acquired knowledge and understanding on real time applications of various functional materials Unit:1 CRYSTAL STRUCTURE AND DEFECTS 18 hot Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. Unit:2 ELECTRICAL PROPERTIES 18 hot Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band C Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. 18 hot Unit:3 MAGNETIC PROPERTIES 18 hot Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of	1	To understand the	fundamental conc	epts of material science						
materials. To analyze the acquired knowledge and understanding on real time applications of various functional materials Unit:1 CRYSTAL STRUCTURE AND DEFECTS 18 hot Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. Unit:2 ELECTRICAL PROPERTIES 18 hot Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band C Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. Unit:3 MAGNETIC PROPERTIES 18 hot Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of	2	To apply the gaine	d subject knowled		oncepts of nanoscience i					
functional materials Image: Construct of the system of			t of presence of in	npurity and applied temperature of	on various properties of					
Structure of Matter- Amorphous, Crystalline, Crystals, Polycrystals, Symmetry, Unit Cells, Crystal Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. Unit:2 ELECTRICAL PROPERTIES 18 hou Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band C Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. Unit:3 MAGNETIC PROPERTIES Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of				and understanding on real time a	pplications of various					
Structures, Crystallographic Planes, Miller Indices, Chemical Bonding, Atomic Bonding in Solids, Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. Unit:2 ELECTRICAL PROPERTIES 18 hou Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band G Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. 18 hou Unit:3 MAGNETIC PROPERTIES 18 hou Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of	Unit:1		CRYSTAL STR	UCTURE AND DEFECTS	18 ho					
Types of Bonds: Metallic, Ionic, Covalent and Vander Waals; Crystal Defects. Unit:2 ELECTRICAL PROPERTIES 18 hou Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band G Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. 18 hou Unit:3 MAGNETIC PROPERTIES 18 hou Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of	Structur	e of Matter- Amor	phous, Crystallin	e, Crystals, Polycrystals, Symm	etry, Unit Cells, Crystal					
Unit:2 ELECTRICAL PROPERTIES 18 hor Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band G Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. 18 hor Unit:3 MAGNETIC PROPERTIES 18 hor Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of				-	-					
Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band G Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. Unit:3 MAGNETIC PROPERTIES Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of	Types o	of Bonds: Metallic,	Ionic, Covalent a	nd Vander Waals; Crystal Defect	S.					
Origin of Band Gap in Solids – Concept of Effective Mass of Electron and Hole – Band G Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. Unit:3 MAGNETIC PROPERTIES Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of	Unit:2		ELECTRI	CAL PROPERTIES	18 ho					
Determination – Electrical Conductivity – Activation Energy – Carrier Concentration Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. – – – Unit:3 MAGNETIC PROPERTIES 18 hou Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of		of Band Gap in								
Semiconductors – Effect of Temperature and Impurity on Fermi Level – Hall Effect: Determination of Hall Coefficient. Unit:3 MAGNETIC PROPERTIES 18 hou Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of	U U	•	•							
Hall Coefficient. Unit:3 MAGNETIC PROPERTIES 18 hou Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – 10 hou Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Nagnetization – Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of			-							
Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of			•							
Magnetic Materials – Dia, Para, Ferro, Anti-Ferro and Ferri Magnetism – Magnetic Susceptibility – Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of										
Curie and Neel Transition Temperature – Hysteresis – Remanence – Coercivity – Saturation Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of	Unit:3		MAGNET	FIC PROPERTIES	18 hor					
Magnetization –Origin of Domain theory- Ferrites – Magnetic Recording and Readout – Storage of	Magnet	ic Materials – Dia,	Para, Ferro, Anti-	-Ferro and Ferri Magnetism – M	agnetic Susceptibility –					
				-	•					
Data – Tapes and Floppy - Magnetic Disk Drives.	-	-			d Readout – Storage of					
	Data – T	Гареs and Floppy -	Magnetic Disk D	rives.						

SEMESTER I Discipline Centric Elective Course-1

aterials: Electronic, Ionic, Orientational, and Space Charge Polarizat onstant RC Equivalent Network – Dielectric Loss – Different Types of Classification of Insulating Materials. THERMAL, OPTICAL & MECHANICAL PROPERTIES at Capacity – Thermal Expansion – Thermal Conductivity and Stress ad Non-Metals. Application of Optical Phenomena – Mechanical H rmation – Interpretation of Stress-Strain Curves, Compressive Stree ockwell, Brinell and Vickers. TOTAL LECTURE HOURS	of Dielectric 18 hours ses – OpticalProperties Properties: Elastic And ength – 90 hours
Classification of Insulating Materials. THERMAL, OPTICAL & MECHANICAL PROPERTIES at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Conductivity and Vickers. TOTAL LECTURE HOURS State Physics, S.O. Pillai, 4 th Ed, New Age International Publishers	18 hours ses – OpticalProperties Properties: Elastic And ength – 90 hours
THERMAL, OPTICAL & MECHANICAL PROPERTIES at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Thermal Expansion – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Thermal Expansion – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Thermal Expansion – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Thermal Expansion – Interpretation of Stress-Strain Curves, Compressive Stress Stress –	ses – OpticalProperties Properties: Elastic And ength – 90 hours
PROPERTIES at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Mechanical H matching for the provide the provided H at Capacity – Thermal Expansion – Mechanical H matching for the provided H at Capacity – Thermal Expansion – Mechanical H matching for the provided H at Capacity – Mechanical H at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Thermal Expansion – Mechanical H at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress <t< td=""><td>ses – OpticalPropertie Properties: Elastic And ength – 90 hour</td></t<>	ses – OpticalPropertie Properties: Elastic And ength – 90 hour
PROPERTIES at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Thermal Conductivity and Stress at Capacity – Thermal Expansion – Mechanical H matching for the provide the provided H at Capacity – Thermal Expansion – Mechanical H matching for the provided H at Capacity – Thermal Expansion – Mechanical H matching for the provided H at Capacity – Mechanical H at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Thermal Expansion – Mechanical H at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress at Capacity – Interpretation of Stress-Strain Curves, Compressive Stress <t< td=""><td>ses – OpticalProperties Properties: Elastic And ength – 90 hours</td></t<>	ses – OpticalProperties Properties: Elastic And ength – 90 hours
at Capacity – Thermal Expansion – Thermal Conductivity and Stress and Non-Metals. Application of Optical Phenomena – Mechanical F rmation – Interpretation of Stress-Strain Curves, Compressive Stre pockwell, Brinell and Vickers. TOTAL LECTURE HOURS	Properties: Elastic And ength – 90 hour
nd Non-Metals. Application of Optical Phenomena – Mechanical F rmation – Interpretation of Stress-Strain Curves, Compressive Stre bockwell, Brinell and Vickers. TOTAL LECTURE HOURS	Properties: Elastic And ength – 90 hour
rmation – Interpretation of Stress-Strain Curves, Compressive Stre ockwell, Brinell and Vickers. TOTAL LECTURE HOURS	ength – 90 hour
State Physics, S.O. Pillai, 4 th Ed, New Age International Publishers	90 hour
State Physics, S.O. Pillai, 4 th Ed, New Age International Publishers	
State Physics, S.O. Pillai, 4 th Ed, New Age International Publishers	
State Physics, S.O. Pillai, 4 th Ed, New Age International Publishers	
duction To Solid-State Physics C Kittel Wiley (1986)	(2001).
100001100010-510001100000, C. KIUCI, WIEY (1700).	
netism: Principles and Applications, D. Craik, Wiley (1995).	
dance Spectroscopy: Theory, Experiment, and Applications, 3rd Edit bukov and Dr. J. Ross Macdonald, Wiley (2018).	ion, Dr. Evgenij
book(s)	
-State Physics: Introduction to the Theory, Patterson, James, Bailey,	Bernard C.Springer
netic Materials : Fundamentals And Applications by Nicola A. Spaldi ersity Press, 2nd Edition, (2018)	n, Cambridge
ine Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
EL: Material Science	
//nptel.ac.in/courses/112/108/112108150/	
ZL. Magnetic Dupperties	
e 1	
in EL	e Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	2	2	2	3	3	2	3	3	2	2
CO3	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	2	2	2	3	2	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	2
CO2	3	3	3	3	2
CO3	3	3	3	3	2
CO4	3	3	3	3	2
C05	3	3	3	3	2
Weightage	15	15	15	15	10
Weighted percentage (rounded of) Course Contribution to Pos	3	3	3	3	2

Semester	Course Code		Core/Elective/ Soft Skill	Credits
		LABORATORY SAFETY AND HEALTH	Elective II – A	2

	 Understanding the basic of Nanoscience and differentiate between nanoand bulk materials Evaluate and critically review the theoretical and practical aspects of nanomerials preparation and application. Understanding the concepts and techniques in nanotechnology
	 Critically assess and outline the nanotechnology for all areas of application
	5. Demonstrate the new properties of nanomaterials for next generation needs
	Generic Elective II- A
Title of the Course:	LABORATORY SAFETY AND HEALTH
Course Objectives	1. Define and identify laboratory safety and health
	2. Understand and describe various safety issues and protocols
	3. Interpretation and application of safety protocols and laboratory rules.
	4. Differentiate different types of laboratory accidents and safety
	protocolsand personal protective equipments.
	5. Evaluation and assessment safety regulations, personal protective
	equipments and First aid practices.
	6. Apply the safety practices in real-time and awareness to the societal
	needs.
	Units
Ι	SAFETY REGULATIONS
	Standard Laboratory Procedures, Rules and Regulations. Lab Safety
	Practices.
II	SAFETY REGULATIONS
	Employee Information, Safety Plans and Arrangement of Laboratories.
III	CHEMICAL AND BIOSAFETY
	Chemicals Handing, MSDS Information, Labelling of The Chemicals,
	Disposal Of The Chemical And Biological Wastes
IV	SAFETY EQUIPMENTS
	Various Safety Equipments, Personal Protective Equipments, User
	Manuals, Arrangements, Training.
V	FIRST AID
	First Aid Practices - Cardiac, Chemical Injury, Physical Injury. Emergency
	Calls and Procedures. First Aid Kits.
Reading List(Print and Online)	1. Introduction To Health And Safety At Work, Elsevier (2015)
Recommended Texts	1. Environmental Health & Safety Procedure Manual, Harper College (2001)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
C03	3	2	3	3	3
CO4	3	2	3	3	3
-CO5	3	2	3	3	3
^P Weightage n	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Semester	Course Code	Core/Elective/ Soft Skill	Credits
		Value Added Course – B	2

Course I	Generic Elective II – B
Title of theCourse:	Intellectual Property Rights
Course Objectives	1. Define Intellectual Property Rights
Ŭ	2. Understand and describe various types of IP rights
	3. To learn different types of IPS
	4. Differentiate different types of filing IPS
	5. To learn Know How and Trade Secrets
	6. Evaluate and assessment of all regulations for the above said IPS.
	Units
I	Introduction: – Invention and Creativity – Intellectual Property (IP) – Importance- Protection of IPR
II	Patents: IP- Patents- Copy rights and related rights- Trademarks and right arising from Trademark registration- definitions- Applications Procedures
Ш	International Convention relating to Intellectual Property- establishment of WIPO- Mission and Activities- History –General Agreement on Trade and Tariff (GATT)
IV	Indian Position Vs WTO and Strategies – Indian IPR- Word Patents- US patents- regulations
V	Case Studies New Patents – copy right and related rights- Trame Marks- Know How-
Reading List (Print	ubbaram N.R "Handbook of Indian Patent Law and Practice, S.
and Online)	Viswanathan, (Printer and Publishers), Pvt. Ltd. 1998
mmendedTexts	Intellectual Property Today: Volume 8 May 2001, [www. Iptoday. Com]

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

		Title of the course	Generic II – C	eneric Elective – C			
CourseCode:		INNOVATION AND ENTREPRENEURSHIP	L	T	P	C	
Core/Elective	e/Supportive	Generic Elective – II C					
Pre-requisite		Basic knowledge with data sets, graphs and scientific images.					
The main obj	ectives of this c	ourse are to:					
foste 2. To u	ring Innovation	nts to learn the various aspects of inr oncept and theories of entrepreneurs alities of entrepreneurs that contribu	hip			of	
<u> </u>	urse Outcomes						
	sful completion						
	nanagement/R1	sk Management - you must take adv Id	ance from	L			
	s options to star much in the m	t a business venture. Quality of the parker	product				
		ds of the customer					
	ea can be innov ing strategies	ative if its in accordance to people's	need.				
Unit:1	Introduction	n to Innovation		18 hou	ırs		
		novation-Types of Innovation-Releations and opportunities	evance of	Techr	nology	for	
Unit:2	Promoting a	nd managing innovation		18 hou	irs		
	nd renewing in	ents, Trademarks, Intellectual Prop novation-Enhancing Innovation Po	• •	-		-	
Unit:3		Strategy for Commercializing Ir	novation	<mark>18 h</mark> o	ours		
Innovation Pr	ing up the Inve	nd barriers for introducing product stment and establishing organisation	ts and ser	vices-S	Selecti	0	
Unit:4		Entrepreneurship		<mark>18 h</mark> o	ours		
social entrepr	reneurship – M hip-Characteris	ontext – social and economic develo leaning, Entrepreneurial attributes tics of an entrepreneurial venture, f	/ indicato	rs-The	ories		

Unit:5	ENT	REPRENEURS	SHIP DEV	ELOPM	IENT IN I	NDIA	18 hours
Growth and pr	omotion of Ei	ntrepreneurship	in India	- Institu	utional ar	range	ments -
Entrepreneuria	l motivation -	Values and Cu	ulture - E	ntreprei	neurship i	n vari	ous sectors -
Access to fina	nce, market,	R&D and Tec	hnology-	Policie	es and pro	ogran	mes related to
entrepreneursh	ip developme	nt					
	TOTAL L	ECTURE HO	URS		90 hoi	ırs	
Text Book(s)							
1. Robi	in Lowe and S	ue Marriott, Ei	nterprise:	Entrepr	reneurship	o and	Innovation
Cone	cepts, Context	s and Commer	cializatio	n			
2. John	Bessant and J	loe Tidd, Innov	vation and	l Entrep	oreneurshi	р	
Reference Boo	ok(s)						
1. Rabi	ndra N. Kanu	ngo "Entrepren	eurship a	nd inno	vation", S	Sage I	Publications, New
Delhi,	1998.	0 1	1			U	
2. Peter	r F. Drucker, I	nnovation and	Entrepre	neurshij	р		
		External Expe				w En	trepreneurs
Publ	ishers: Entrep	reneurship Dev	elopmen	t" Instit	ute of Ind	lia, Al	nmadabad, 1986.
		nd Sharma (20					
	ishing house,		,,,		1	1 /	
Related Onlin			YAM, NI	PTEL, V	Websites	etc.]	
		/apping with Pr	,	,			
			-				
Cos PO1	PO2 PO3	PO4 PO5	PO6	PO7	PO8 P	09	PO10

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium - 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

SEMESTER I Nanoscience Practical I

Course Code	Course Name:	Nanoscience Practical- I	Credits 4
Lecture Hours : (L)	Tutorial	Lab practice Hours : (P) per	Total: (L+T+P)
per week	Hours :	week	Hours per week
pei week	(T) per week	WCCK	nours per week
Course Category:	Year &	Admission Year:	
	Semester :		
Pre requisite:	Basic knowledg	e with concepts of	
	Biology, Chemi	istry and Physics	
Links to other courses			
Learning Objectives:	The main objec	tives of this course are to:	
	1. Acquire pra	actical skills in the use of inst	ruments, technologiesand
	methods in Bior	molecules like glucose, urea, o	creatinine, DNA, proteins,
	2. Apply the p	practical knowledge in unders	tanding the estimation,
	separation techn	niques.	
	3. Provides of	pportunities to collect and exa	mine samples fromblood
	and cells.		
	4. Master the	technical skills in buffer, med	ium, sterilizing,culturing,
	and charactering	g biological samples.	
	5. To compare	e the structural diversity of he	althy and diseased
	condition.		

	Units					
Ι	PROTEIN ESTIMATION					
	Lowry and Bradford methods					
II	ESTIMATIONS OF BLOOD- Glucose, Blood urea, Uric acid, andCreatinine					
III	SEPARATION AND CHARACTERIZATION OF PROTEIN					
	Chromatography, Gel Filtration, Ion exchange, Affinity chromatography, TLC,					
	Polyacrylamide, Agarose gel electrophoresis.					
IV	DNA ESTIMATION					
	Isolation of DNA and demonstration of apoptosis of DNA laddering					
V	MICROSCOPY – FLUORESCENCE MICROSCOPE EXPERIMENTS					
	Cell Counting, MTT assay for cell viability, and growth.					

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Mapping with Programme Specific Outcomes

SEMESTER-II CORE-IV

Course Code	Course Name: and Nanotechno	Introduction to Nanoscience ology	Credits: 4			
Lecture Hours: (L)	Tutorial	Lab practice Hours: (P) per	Total: (L+T+P)			
per week	Hours:	week	Hours per week			
	(T) per week		-			
Course Category:	Year &	Admission Year:				
	Semester:					
Pre requisite:	Basic knowledge	with concepts of				
	Nanoscience and	Nanotechnology				
Learning Objectives:	The main objec	tives of this course are to:				
	To unde	To understand fundamental concepts of nanoscience and technology				
	To gain knowled	ge on size dependent various ph	ysical properties			

Exp	ected Cours	se Outcomes:				
On t	he successfu	I completion of the course, student will be able to:				
1	To unders	and the fundamental concepts of nanoscience				
2	To apply the basic concepts of physics, chemistry and biology concepts to understand the advanced concepts of nanoscience					
3	To influen materials.	ce of size and morphology and other factors on various properties	s of			
4	To analyze	e the acquired knowledge and understanding on real time applicat	ions			
	of various	applications				
Uni		FUNDAMENTALS	18 hours			
Bac	kground to a	nanoscience - Historical perspectives and Scientific revolutions	s – Definitions and			
Clas	sifications b	based on dimension: Zero, One, Two and Three - Clusters, Quantur	n dots, Nanowires,			
Rod	s and tubes,	and thin films; Hard sphere model: Grain and Grain boundary con	ncepts;			
Uni	t:2	BASIC CONCEPTS	18 hours			
-		Bottom-Up Approaches: Physical - Chemical and Mechanical R				
vari	ous paramet	ers on morphology of crystallites - Nanocomposites: Metal and M	ietai Oxides; wietai			

Clooning and		ophobicity, Self-
	Antifogging – Colored Glasses and Dichroism.	
Unit:3	UNIQUE PROPERTIES	18 hours
Quantum Co	nfinement Effects: Influence of grain size and morphology – Physi	cal properties with
Uniqueness c	ompared to bulk and microscopic solids: Optical - Surface Plasmo	n Resonance, Band
Gap Widenin	g, Magnetic – Superparamagnetism, Thermal – Melting point depres	sion.
Unit:4	ADVANCED NANOSTRUCTURED MATERIALS	18 hours
Allotropes of	carbon: Graphene, CNT, C-dots, Fullerenes - Inorganic: Organic hy	brids – Ferrofluids-
Zeolites- Cor	e-shells – Nanostructures of Zinc Oxide: tetrapods, rings, springs, be	elt, rods, wires -
Additive Ma	nufacturing of 3D Nanoarchitected Metals – Nanorobots	
T	ROAD MAP	10 1
Unit:5	on of electronic materials and devices – Lithography techniqu	18 hours les - Scaling issues
Text Book(s	TOTAL LECTURE HOURS	90 hours
I CAL DUUK(S		
1 Solid		(2001)
	State Physics, S.O. Pillai, 4th Ed, New Age International Publishers	(2001).
2 Introd	State Physics, S.O. Pillai, 4th Ed, New Age International Publishers out on To Solid-State Physics, C. Kittel, Wiley (1986).	(2001).
2 Introd 3 Magn	State Physics, S.O. Pillai, 4th Ed, New Age International Publishers of uction To Solid-State Physics, C. Kittel, Wiley (1986). etism: Principles and Applications, D. Craik, Wiley (1995).	· · · ·
2 Introd 3 Magn	State Physics, S.O. Pillai, 4th Ed, New Age International Publishers out on To Solid-State Physics, C. Kittel, Wiley (1986).	· · · ·
2 Introd 3 Magn	State Physics, S.O. Pillai, 4th Ed, New Age International Publishers of uction To Solid-State Physics, C. Kittel, Wiley (1986). etism: Principles and Applications, D. Craik, Wiley (1995). ger Handbook of Nanotechnology, Edited by Bharat Bhushan, Spring	· · · ·
2 Introd 3 Magn 4 Spring Reference Bo 1. NAN	State Physics, S.O. Pillai, 4th Ed, New Age International Publishers of uction To Solid-State Physics, C. Kittel, Wiley (1986). etism: Principles and Applications, D. Craik, Wiley (1995). ger Handbook of Nanotechnology, Edited by Bharat Bhushan, Spring	ger (2006)
2 Introd 3 Magn 4 Spring Reference Bo 1. NANG	State Physics, S.O. Pillai, 4th Ed, New Age International Publishers of uction To Solid-State Physics, C. Kittel, Wiley (1986). etism: Principles and Applications, D. Craik, Wiley (1995). ger Handbook of Nanotechnology, Edited by Bharat Bhushan, Spring pok(s) D: The Essentials: Understanding Nanoscience and Nanotechnology,	rer (2006) T. Pradeep,
2 Introd 3 Magn 4 Spring Reference Bo 1. NAN McGr 2. Magn	State Physics, S.O. Pillai, 4th Ed, New Age International Publishers of uction To Solid-State Physics, C. Kittel, Wiley (1986). etism: Principles and Applications, D. Craik, Wiley (1995). ger Handbook of Nanotechnology, Edited by Bharat Bhushan, Spring ok(s) D: The Essentials: Understanding Nanoscience and Nanotechnology, aw Hill (2017)	ger (2006) T. Pradeep,
2 Introd 3 Magn 4 Spring Reference Bo 1. NAN McGr 2. Magn Unive	State Physics, S.O. Pillai, 4th Ed, New Age International Publishers of uction To Solid-State Physics, C. Kittel, Wiley (1986). etism: Principles and Applications, D. Craik, Wiley (1995). ger Handbook of Nanotechnology, Edited by Bharat Bhushan, Spring pok(s) D: The Essentials: Understanding Nanoscience and Nanotechnology, aw Hill (2017) etic Materials: Fundamentals and Applications by Nicola A. Spaldin,	rer (2006) T. Pradeep,
2 Introd 3 Magn 4 Spring Reference Bo 1. NANG McGr 2. Magn Unive Related Onlin	 State Physics, S.O. Pillai, 4th Ed, New Age International Publishers of uction To Solid-State Physics, C. Kittel, Wiley (1986). etism: Principles and Applications, D. Craik, Wiley (1995). ger Handbook of Nanotechnology, Edited by Bharat Bhushan, Spring bok(s) D: The Essentials: Understanding Nanoscience and Nanotechnology, aw Hill (2017) etic Materials: Fundamentals and Applications by Nicola A. Spaldin, rsity Press, 2nd Edition, (2018) 	rer (2006) T. Pradeep,
2 Introd 3 Magn 4 Spring Reference Bo 1. NAN McGr 2. Magn Unive Related Onlin 1 NPTE	State Physics, S.O. Pillai, 4th Ed, New Age International Publishers of uction To Solid-State Physics, C. Kittel, Wiley (1986). etism: Principles and Applications, D. Craik, Wiley (1995). ger Handbook of Nanotechnology, Edited by Bharat Bhushan, Spring ok(s) D: The Essentials: Understanding Nanoscience and Nanotechnology, aw Hill (2017) etic Materials: Fundamentals and Applications by Nicola A. Spaldin, rsity Press, 2nd Edition, (2018) the Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	rer (2006) T. Pradeep,
2 Introd 3 Magn 4 Spring Reference Bo 1. NANG McGr 2. Magn Unive Related Onlin 1 NPTE https:	State Physics, S.O. Pillai, 4th Ed, New Age International Publishers of uction To Solid-State Physics, C. Kittel, Wiley (1986). etism: Principles and Applications, D. Craik, Wiley (1995). ger Handbook of Nanotechnology, Edited by Bharat Bhushan, Spring ook(s) D: The Essentials: Understanding Nanoscience and Nanotechnology, aw Hill (2017) etic Materials: Fundamentals and Applications by Nicola A. Spaldin, rsity Press, 2nd Edition, (2018) he Contents [MOOC, SWAYAM, NPTEL, Websites etc.] L: Introduction to Nanomaterials	rer (2006) T. Pradeep,

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Mapping with Programme Outcomes

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
C03	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium – 2, Low - 1

SEMESTER-II

CORE-V

		CORE-V						
Course		Preparation of Nanomaterials	L	Т	Р	С		
Code:								
Core/Elective	ve/Supportive Core 4 0							
Pre-requisite Basic knowledge with wet chemistry								
		and materials						
Course Objec	tives:		- -					
The main object	ctives of this cou	irse are to:						
		aration procedures also the various factors	that affe	cts the s	size and			
	phology of crys							
2. To	gain knowledge	on current status, future trends and scope f	for resear	rch.				
=	rse Outcomes:							
On the success	ful completion of	of the course, student will be able to:						
		tal concepts in materials preparation with	various					
Morphol	ogies							
2 To apply	the gained subj	ect knowledge towards understanding the	mechani	sms				
involved	physical, chemi	cal and mechanical routes.						
3 To evalu	ate and understa	nd the role of preparation method towards	grain w	ith				
narrow d	listribution and d	lesired morphology.						
4 To analy	ze acquired kno	wledge and understanding on effect of gra	in					
morphol	ogy and its need	s for technological advancements						
Unit:1	BAS	ICS IN MATERIALS PREPARATION		18 hou	rs			
Types of matte	er – Crystalline	and Amorphous solids – Alloys – compo	sites - co	mpoun	ds - Gra	ıin –		
		volume ratio – Temperature effects – Gra	in bound	lary seg	regation	and		
oinning – Aggi	regation-Dimen	sional Classifications.						
				101				
Unit:2	11 11 7	PHYSICAL ROUTES	• 1 .•	18 hou				
		s condensation Role of inert gases - Post of				ering		
		Pulsed laser deposition – Rapid solidifica			-	1 1		
	• •	s - Fabrication of nanostructures and micr	ofabricat	tion usir	ig wet a	na ary		
tching-Lithog	rapny.							
Init.2	CHEN	IICAL AND BIOLOGICAL METHOD	C	18 hou				
Unit:3		bitation – Sol-Gel process– Chemical pred				Davara		
•			-					
		- Hydrolysis: Reaction kinetics - Hy						
	-	bute: DC and Pulsed electrodeposition			-			
	-	al Methods: synthesis of nanomaterials u	-					
	-	ic bacteria for natural synthesis - role o	1 plants	III INPS	synthes	515 an		
Phytoremediat	1011							
Init•4		SPECIAL IZED TECHNIQUES		18 hou	N G			
		ST DA LALAZOLI DI DI DI DI DI S		110 1101				

Unit:4SPECIALIZED TECHNIQUES18 hoursElectrophoretic deposition – Chemical Vapour deposition: Wet and Dry oxidation process –Dip and
Spin coating process – Successive ionic layer adsorption and reaction (SILAR) – Spray and Flame
spray pyrolysis - Self assembly.

Unit	:5	IMPORTANCE OF MORPHOLOGY	18 hours
Crys	stallites With	h Various Morphologies – Polymorphs – Surface A	spect Ratio – Grain size
distr	ibutions – S	urface area - Current Status and Forecast for The Future	Trends
		TOTAL LECTURE HOURS	90 hours
Text	t Book(s)		
1	Springer	Handbook of Nanotechnology- Ed. by B. Bhushan, Sprin	nger-Verlag (2004)
2	Vacuum	Technology, A. Roth, North- Holland Pub., 2 nd Edition (1	982)
3		nistry of Nanomaterials: Synthesis, Properties and Applie eetham (Eds), Wiley-VCH Verlag (2004)	cations, C.N.R. Rao, A.Muller,
4	B.S. Mur	ty and S. Ranganathan, International Materials Reviews	(1998) Vol. 43(3), 101
Refe	erence Book	s(s)	
1.	Nanopart	ticles And Nanostructured Films Preparation, Characteriz	ation And Applications,
	Janos H.	Fendler (Ed) Wiley (1998)	
2.	H. Gleite	r, Progress In Materials Science, Vol.33, p.223 (1989)	
Rela	ted Online	Contents [MOOC, SWAYAM, NPTEL, Websites etc.	.]
1	NPTEL:	Nanotechnology, Science and Applications	
	https://np	otel.ac.in/courses/113/106/113106093/	
2	YOUTU	BE: Introduction to Nanomaterials	
	https://w	ww.youtube.com/watch?v=qUEbxTkPIWI	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	3	3	3	2	2	2	2	3	3	3
CO2	2	2	2	3	3	2	3	3	2	2
CO3	2	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	2	2	2	3	2	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1 Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	2
CO2	3	3	3	3	2
CO3	3	3	3	3	2
CO4	3	3	3	3	2
C05	3	3	3	3	2
Weightage	15	15	15	15	10
Weighted percentage (rounded of) Course Contribution to Pos	3	3	3	3	2

SEMESTER-II

CORE-VI

Course Code		Characterization Nanomaterials –I	Credits: 4 Total: (L+T+P) Hours per week				
Lecture Hours : (L per week		Lab practice Hours: (P) per week					
Course Category:	Year & Semester :	Admission Year:					
Pre requisite:	Basic knowledg	ge with concepts of physics.					
Learning Objective	2. Disting 3. Explor 4. Unders	 Distinguish the nanomaterials and bulk materials using X-ray. Explore the chemistry of the materials 					
Course Outcomes	 2. Explore the proposed in the pr	6. Understanding the suitability of the characterization for the particular					
		Units					
I							
II	Unit II X – ray techniques K-ray powder diffraction –Quantitative determination of phases; Struct analysis, single crystal diffraction techniques - Determination of accur attice parameters - structure analysis-profile analysis - particlesize analy using Scherer formula- Particle Size Analyzer- Ellipsometry- thickn neasurements						
III	Characterization of	Spectroscopy ron Spectroscopy, Auger Ele f Nanomaterials - EELS– E nomaterials characterization					

IV	Unit IV Mechanical properties measurement
	Nanoindentation principles- elastic and plastic deformation -mechanical
	properties of materials in small dimensions- models for interpretation of
	Nanoindentation load-displacement curves- Nanoindentation data analysis
	methods-Hardness testing of thin films and coatings- MD simulation of
	nanoindentation.
V	Unit IV Magnetic and electrical properties measurement
	Vibration Sample Magnetometer, Impedance Spectroscopy- PPMS, -
	Measurement of Magnetic and electrical properties of nanomaterials.
Reading List(Print	1. Introduction to Spectroscopy
and Online)	dl.iranchembook.ir > ebook > organic-chemistry-2753
	2. An Introduction to Surface Analysis by XPS and AES Wiley
	onlinelibrary.wiley.com > doi > book
	3. EPMA - electron probe microanalysis
	www.ems.psu.edu > harbin > EPMA.ppt.pdf
	4. <u>Physical Property Measurement System</u>
	www.mrl.ucsb.edu > instruments > hcapPPMS
mmendedTexts	References:
	1. Elements of X-ray Diffraction B. D. Cullity, Addison Wesley, 1977
	2. Transmission Electron Microscopy: A Textbook for Materials
	Science
	David B Williams, C Barry Carter, (1996) Plenum Press, New York
	3. Impedance Spectroscopy: Theory, Experiment, and Applications,
	E. Barsoukov and J. Ross Macdonald (Editors) (2000) John Wiley &
	Sons (P)Ltd.
	4. Fundamentals of Fourier Transform Infrared Spectroscopy,
	Brian C Smith, (1995) CRC Press
	5. Nanoindentation, By Anthony C Fischercripps, Anthony C.,
	Springerscience and Bussiness media publications, 2011
	6. Nanomaterials, Nanotechnologies and Design: An Introduction for
	Engineers, Daniel L. Schodek, Paulo Ferreira, Michael F. Ashby, Elsevier,
	2009.

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to Pos	3	2	3	3	3

Mapping with Programme Specific Outcomes

SEMESTER-II

Discipline Centric Elective Course -III

Course Code	Course Name: NANOTOXIC	INTRODUCTION TO	Credits: 3	
Lecture Hours: (L) per week	TutorialLab practice Hours: (P) perHours:week(T) per week		Total: (L+T+P) Hours per week	
Course Category:	Year & Semester:	Admission Year:		
Pre requisite:	The students who are taking this course should know about the fundamentals of biological cell and tissues and also the basic knowledge in materials.			
Links to other courses				
Learning Objectives:	 Unders different Evalua aspects Comprestructu toxicol Critica nanoto Demons 		and bulk materials e theoretical and practical on resulted from the nanoscale ological principles in Nano the nanoscience for	

Course Outcomes	On the successful completion of the course, student will be able to
	1. Understanding the basic of Toxoicology and Nano science and differentiate between nanomaterials and bulk materials
	2. Evaluate and critically review the theoretical and practical aspects of Nano materials application
	3. Comprehending the novel function resulted from the nanoscale structures using scientific and technological principles in Nano toxicology
	4. Critically assess and outline the nanoscience for nanotoxicology
	5. Demonstrate the new properties of Nano materials and its significance in toxicology

Course Objectives	1. Learn the types of hazard and its application-
J	2. Understand the importance of nanotoxicant and its effect inhealth -
	2. Onderstand the importance of nanotoxicant and its effect innearth -
	3. Study the basics of biomolecules and its application in
	nanotoxicology -
	4. Comprehend the effect of Nanotoxicology –
	5. Understand the response of nanomaterials in Nano engineering devices and evaluate its significance -
Units	Total -48hrs
Ι	AREAS OF TOXICOLOGY
	Introduction- definition of terms- areas of Toxicology- Toxicant- Types of Toxic
10h	hazardous materials- Physical Hazard, Chemical hazard, Biological Hazard, Toxic
	metabolites, Assessment of Risk- Risk assessment of Nanoparticles and
	Human Health.
II	NANOMATERIALS
1.0.7	Nanoparticles in the Environment- Nanomaterials in the atmosphere, Particle
	Characterization, Types of Transport, Routes of Exposure, Deposition mechanism, Potential mechanism of Nanosize particle toxicity, Passage through
	biological Membranes, toxic kinetics.
III	NANOPOLLUTION
	Nanomaterials in environment, Source of pollution, Transport through
	environment.
IV	NANOMATERIAL EXPOSURE MEASUREMENT
	Nano sized materials exposure to human, Measurement methods, Threshold
10h V	values-permissible limits. PORTALS OF NANOMATERIALS ENTRY
v	PORTALS OF NANOMATERIALS ENTRY
1.011	Types of portals entry, Target tissue, Routes of entry of nano pollutants,
	Absorption, Distribution mechanism on target tissue.
Reading List(Print	https://www.intechopen.com/books/toxicology-new-aspects
and Online)	
Recommended	1. Nanotechnology: Health and Environmental Risks, Jo Anne
Texts	Shatkin, CRC Press, 2008
	2. Nanotechnology: Environmental Health and Safety, Risks,
	Regulation and Management, Matthew Hull and Diana Bowman, Elsevier, 2010
	Principles and Methods of Toxicology. Edited by A.W. Hayes. Taylor and Francis, 2008.

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Mapping with Programme Outcomes

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to Pos	3	2	3	3	3

SEMESTER-II

Generic Elective course-IV

Course Code	Course Name:	Nanobiotechnology	Credits 3		
Lecture Hours : (L) per week	Tutorial Hours : (T) per week	Lab practice Hours : (P) per week	Total: (L+T+P) Hours per week		
Course Category:	Year & Semester :	Admission Year:			
Pre requisite:	The Student should have the fundamental knowledge in biomaterials, Biological Cell, functions of cell, biochemistry of biomolecules and its relation to cell function				
Links to other courses					
Learning Objectives:	 The main objectives of this course are to: Acquire the knowledge of the cell biology and application. Explaining the role of cell organelles, metabolism, and bioenergetics. Understanding the about the morphology, structure, of DNA, RNAand different types of nucleic acid. Gaining the knowledge about of glucose, and fatty acid metabolism. Evaluation and comparison of the different enzyme role energy production2 				
Course Outcomes	 On the successful completion of the course, student will be able to Understanding the basic of Biology and Nano science and differentiate between Nano materials and bulk materials Evaluate and critically review the theoretical and practical aspectsof Nano materials application. Explain the concepts in Nano biotechnology Critically assess and outline the nanotechnology for all areas of application Demonstrate the new properties of Nano materials for next generation needs 				
Course Objectives	 of Implan 2. Learn the and tissue 3. Recognize Nanostrue 4. Study the and its me 5. Know the applicatio 6. Understar 	nd the basics of bioinspired stats in Nanobiotechnology- importance of bioactive nano engineering the significance of Biomole ctures – applications of Polymer nanof erits and demerits- importance of vesicles and list n in drug delivery – nd the overall basics of biomo- iotechnology	omaterials in bone grafting ecules in the fabrication of fibers in Tissue engineering ipids in sensor and also its		

3

Units	Total -48hrs
I 9h	Bio-mineralised Inorganic Nanomaterials – Nanostructures and Dynamicsof Biocompatible surfactant monolayers and bilayers – Bio-interface, Bio- conjugation, Bio-matrix based on bioinspired phospholipids polymers.
II 10h	Self-assembly of ionic-complementary peptides and their applications in nano-biotechnology –from nanocluster assays to optical biochips for nano-biotechnology –bioactive nanomaterials in bone grafting and tissue engineering- inorganic /polymer nano composites for dental restoration
III 9h	and bone replacement applications. DNA based artificial nanostructures: fabrication, properties and applications – Nucleic acid engineered nanomaterials and their applications- RNA, DNA
IV 10h	Protein patterning for applications in biomaterials and biodevices. Polymers nanofibers and their applications in bioengineering – functional polymers for bone tissue engineering applications – applications of
V	nanotechnology in tissue engineering Vesicles and liposomes in sensor technology –Self-assembling
10h	nanostructured injectable polymeric gels for drug delivery - Engineering surface erodable polyanhydrides with tailored microstructure for controlled drug and protein delivery
Reading List(Print and Online)	http://www.routledgehandbooks.co
Recommended Texts	 Challa S.S.R. Kumar (Ed) Biological and pharmaceutical nanomaterials : Wiley – VCH Verlag GmbH& Co, KgaA. Ninmeyer C.M, Mirkin C.A (Eds) 2005. Nanobiotechnology H.S. Nalwa (Ed) Handbook of Nanostructured Bioaterials and their applications in Nanobiotechnology, American Scientific Publishers.2005

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium - 2, Low - 1

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

Mapping with Programme Specific Outcomes

Course Code	Course Name	Nanoscience Practical II	Credits: 3			
Lecture Hours: (L) per week	TutorialLab practice Hours: (P) pHours:week(T) per week		Total: (L+T+P) Hours per week			
Course Category:	Year & Semester:	Admission Year:				
Pre requisite:	Fundamental and theoretical knowledge on preparation and characterization techniques					
Learning Objectives:	 Acquire pramethods to Apply the provides of approaches Master equipments appropriate Understand 	 The main objectives of this course are to: 1. Acquire practical skills in the use of instruments, technologies methods to fabricate nanomaterials and their characterization 2. Apply the practical knowledge in understanding the structural the materials 3. Provides opportunities to synthesize the materials using differ approaches 4. Master the technical skills in handling lab equipments, characterizing the acquired data and analyze using appropriate tool 5. Understand the role of environmental conditions on preparation of nanomaterials 				

Practical-II	Synthesis and Characterization of Biomolecules and Biomaterials
	1. Synthesis of Silver Nanoparticles by Chemical Reduction Method
	and Their UV-VIS Absorption Studies.
	2. Synthesis of Gold Nanoparticles by Chemical Reduction Method
	and Their UV-VIS Absorption Studies.
	3. Synthesis of Silver Nanoparticles by Polyol Method and Their
	UV-VIS Absorption Studies.
	4. Synthesis of zinc oxide Nanoparticles by sol-gel method and
	characterize using UV-VIS Absorption Studies.
	5. Synthesis of silver nanoparticles by using plant extract and UV vis
	absorption studies
	6. Synthesis of silver nanoparticles using bacteria and
	7. Study of chemical kinetics using UV- vis spectroscopy.
Reading List(Print	1. Fundamentals Of Analytical Chemistry - Skoog, West and Holler,
and Online)	Saunders College, Publishing, VII Ed, (1996).
	2. Text Book Of Quantitative Inorganic Analysis – A.I. Vogel, Elbs,
	IVEd., (1985).
	3. Physical Chemistry, A. Alberty And R.J. Silbey
mmendedTexts	1. Inorganic Chemistry: Principles of Structure and Reactivity – J.E.
	Huheey, E.A. Keiter and R.L. Keiter, IVEd.
	2. Physical Chemistry, Atkins
	3. Text Book Of Quantitative Chemical Analysis – A.I. Vogel, VI
	Ed, Pearson Education Ltd, 2001

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Mapping with Programme Specific Outcomes

Strong - 3, Medium – 2, Low – 1

Skill enhancement Course – I

RESEARCH METHODOLOGY

Semester	Course Code		Core/Elective/ Soft Skill	Credits
IV Sem		RESEARCH METHODOLOGY	Soft skill	2

	-
Learning	On completion of this course the students will be able to:
objectives	
, in the second	1. Understand the aims and objectives research and formulate a research work
	plan in a scientific manner.
	2. Generate good research hypothesis, design appropriate experiments, collect and
	interpret the data to validate their experiments.
	3. Process the data using computer software, analyze the data and critically
	examine the hypothesis and the conclusions.
	 Obtain and evaluate information from a variety of databases.
	5. Communicate effectively in a variety of forms like research publications,
	patents, etc.
Title of the	RESEARCH METHODOLOGY
Course:	
Credits:	2
Course	1. To help students in formulation of research aims and objectives in an
Objectives	appropriate manner.
	2. To help the students in framing good research hypothesis.
	3. To inculcate knowledge of scientific methodology in analysing research
	data.
	4. To impart the knowledge of sampling techniques and record scientific data
	in a proper way
	5. To acquaint the students with chemistry related software and online
	scientific databases like Scifinder, Cambridge Structural Database (CSD)
	etc.
	Units
I	Foundations of Research: (9 h)
	Meaning, Objectives, Motivation, Utility. Concept of theory, empiricism,

	3
	deductive and inductive theory. Characteristics of scientific method –
	Understanding the language of research – Concept, Construct, Definition,
	Variable. Research Process
	Problem Identification & Formulation – Research Question – Investigation
	Question – Measurement Issues – Hypothesis – Qualities of a good Hypothesis –
	Null Hypothesis & Alternative Hypothesis. Hypothesis Testing – Logic &
	Importance.
II	Research Design: (9 h)
	Concept and Importance in Research – Features of a good research design –
	Exploratory Research Design – concept, types and uses, Descriptive Research
	Designs – concept, types and uses. Experimental Design: Concept of
	Independent & Dependent variables.
	Qualitative and Quantitative Research: Qualitative research – Quantitative
	research – Concept of measurement, causality, generalization, replication.
	Merging the two approaches. Measurement: Concept of measurement– what is
	measured? Problems in measurement in research – Validity and Reliability.
	Levels of measurement – Nominal, Ordinal, Interval, Ratio.
III	Sampling and data analysis: (9 h)
	Concepts of Statistical Population, Sample, Sampling Frame, Sampling Error,
	Sample Size, Non Response. Characteristics of a good sample. Probability
	Sample – Simple Random Sample, Systematic Sample, Stratified Random
	Sample & Multi-stage sampling. Determining size of the sample – Practical
	considerations in sampling and sample size.
	Data Analysis: Data Preparation – Univariate analysis (frequency tables, bar
	charts, pie charts, percentages), Bivariate analysis – Cross tabulations and Chi-
	square test including testing hypothesis of association.
IV	Interpretation of Data and Paper Writing : (9 h)
	- Layout of a Research Paper, Impact factor of Journals, When and where to
	publish? Ethical issues related to publishing, Plagiarism and Self-Plagiarism.
	Forms and types of scientific reports. Steps involved in scientific article writing.
	Publication process, selection of journals. Writing research proposals and steps
	involved. Dissertation/Thesis writing: format, content and chapterization.
	Bibliography and references, referencing styles. Appendices.
V	Use of tools / techniques for Research: : (9 h)
	methods to search required information effectively, Reference Management
	Software like Zotero/Mendeley, Software for paper formatting like LaTeX/MS
Decement	Office, Software for detection of Plagiarism.
	1. Business Research Methods – Donald Cooper & Pamela Schindler, TMGH,
Texts	9th edition 2 Business Research Methods Alan Bryman & Emma Bell, Oxford
	2. Business Research Methods – Alan Bryman & Emma Bell, Oxford
	University Press. 3. Research Methodology – C.R.Kothari, New Age International, New Delhi,
	3. Research Methodology – C.R.Kothari, New Age International, New Delhi, 2014.
	 Kumar, R. Research Methodology–A Step-By-Step Guide for Beginners;
	2nd Ed., Pearson Education: New Delhi, 2005.
	 Montgomery, D. C. Design & Analysis of Experiments; 8th Ed., Wiley
	India: Noida, 2013.
	maia. maia, 2015.

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

4 SEMESTER-III Core-VII

Lecture Hours: (L) per week Total: (L+T+P) Hours per week Course Year & Semester: Admission Year: Category: Pre requisite: The student should have the fundamental knowledge in biomaterials, Biological Cell, functions of cell, biochemistry of biomolecules and its relation to cell function Cearning The main objectives of this course are to: 1 Learning new Perspective in Nanoelectroncs 1 Learning methods and shape enabled properties of nanomaterials 3. Understanding the functioning of various electronic devices. 4. Understanding and assessment of electronic properties for sensor development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications 1 Basic Concept of Nanoelectrics- New Perspectives - New Ohm's Law- Density of states - Fermic Function- Types of Conductance- Ballastic Conductance - Resistance: Ballistic to Diffusive - Nanotransistors 11 SEMICONDUCTOR NANODEVICES 12 Single-Electron Devices, Nano Scale MOSFET - Resonant Tunnelling Transistor - Single-Electron Transistors; Nanorobotics and Nanomanipulation Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, SI NW FET. 111 ELECTRONIC AND PHOTONIC MATERIALS Single Electron Devices, Nano Scale MOSFET - Resonant Tunnelling T	Course Code	Course Name: NANOE		Credits: 4
Hours: (L) per week (T) per week week Hours per week per week Year & Semester: Admission Year: Interpret and the status of the student should have the fundamental knowledge in biomaterials, Biological Cell, functions of cell, biochemistry of biomolecules and its relation to cell functions of cell, biochemistry of biomolecules and its relation to cell functions of cell, biochemistry of biomolecules and its relation to cell functions of cell, biochemistry of biomolecules and its relation to cell functions of cell, biochemistry of biomolecules and its relation to cell functioning of various electronic devices. 4. Understanding the functioning of various electronic properties for sensor development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic properties for development of smart devices. 0. Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states - Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive - Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transistor or - Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transistor CNT and Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.	Tast	AND NANOSENSORS		$T_{a,b,a}$ (L $T_{a,b}$ D)
per week Year & Semester: Admission Year: Course Year & Semester: Admission Year: Pre requisite: The student should have the fundamental knowledge in biomaterials, Biological Cell, functions of cell, biochemistry of biomolecules and its relation to cell function Learning The main objectives of this course are to: Dijectives: 1. Learning New Perspective in Nanoelectroncs 2. Explaining the size and shape enabled properties of nanomaterials 3. Understanding and assessment of electronic properties for development and application. 5. Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist- or - Single-Electron Transistors; Nanorobotics and Nanomanipulation Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, SI NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Structures Based Leds - OLED and Photo Detector				
Course Category: Year & Semester: Admission Year: Category: The student should have the fundamental knowledge in biomaterials, Biological Cell, functions of cell, biochemistry of biomolecules and its relation to cell function Learning The main objectives of this course are to: Dijectives: 1. Learning New Perspective in Nanoelectroncs 2. Explaining the size and shape enabled properties of nanomaterials 3. Understanding the functioning of various electronic devices. 4. Understanding the functioning of various electronic properties for development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications Units I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Bailastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Transistors; Nanorobotics and Nanomanipulation Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV N		(1) per week	week	Hours per week
Category: Image: Category: Pre requisite: The student should have the fundamental knowledge in biomaterials, Biological Cell, functions of cell, biochemistry of biomolecules and its relation to cell function Learning The main objectives of this course are to: Objectives: 1. Learning New Perspective in Nanoelectroncs 2. Explaining the size and shape enabled properties of nanomaterials 3. Understanding and assessment of electronic properties for sensor development of smart devices. 4. Understanding and assessment of electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transistor or - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, SI W FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fund				
Pre requisite: The student should have the fundamental knowledge in biomaterials, Biological Cell, functions of cell, biochemistry of biomolecules and its relation to cell function Learning The main objectives of this course are to: Objectives: 1. Learning New Perspective in Nanoelectroncs 2. Explaining the size and shape enabled properties of nanomaterials 3. Understanding and assessment of electronic properties for development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Transistors; Nanorobotics and Nanomanipulation Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, SI NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomt Staticase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging A		Year & Semester:	Admission Year:	
Biological Cell, functions of cell, biochemistry of biomolecules and its relation to cell function Cearning The main objectives of this course are to: 1. Learning New Perspective in Nanoelectroncs 2. Explaining the size and shape enabled properties of nanomaterials 3. Understanding and assessment of electronic properties for sensor development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications 10 1 Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transistor - Single-Electron Transistors; Nanorobotics and Nanomanipulation Molecular Nanowires-Organic LED, Organic FETs-CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Thenomena- Coulomb Blockade - Coulomb Statrcase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensor				
relation to cell function Learning The main objectives of this course are to: 1. Learning New Perspective in Nanoelectroncs 2. Explaining the size and shape enabled properties of nanomaterials 3. Understanding and assessment of electronic properties for sensor development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications Units 1 Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transistor - Single-Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Statricase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, T	Pre requisite:			
Learning The main objectives of this course are to: 1. Learning New Perspective in Nanoelectroncs 2. Explaining the size and shape enabled properties of nanomaterials 3. Understanding the functioning of various electronic devices. 4. Understanding and assessment of electronic properties for sensor development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications Units I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states - Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist-or - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs-CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors - Otical and Radiation S			s of cell, biochemistry of bio	molecules and its
Objectives: 1. Learning New Perspective in Nanoelectroncs 2. Explaining the size and shape enabled properties of nanomaterials 3. Understanding the functioning of various electronic devices. 4. Understanding the functioning of various electronic devices. 4. Understanding and assessment of electronic properties for sensor development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications Units Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist-or - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs-CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors- Heat Sensors-				
 2. Explaining the size and shape enabled properties of nanomaterials 3. Understanding the functioning of various electronic devices. 4. Understanding and assessment of electronic properties for sensor development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications Units I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist-or - Single-Electron Transistors; Nanorobotics and Nanomanipulation Molecular Nanowires-Organic LED, Organic FETs-CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors- V NANOSENSORS Electronagnetic Sensors - Electrical Resistance Sensors, Electrical Current Sensors, Electrical Voltage Sensors, Cas and Liquid Flow Sensors, Position Sensors - Obtical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging. Recommended	Learning	The main objectives of the	nis course are to:	
3. Understanding the functioning of various electronic devices. 4. Understanding and assessment of electronic properties for sensor development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications Units I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fernic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transistor - Single-Electron Transistors; Nanorobotics and Nanomanipulation Molecular Nanowires-Organic LED, Organic FETs-CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors- Electrical Resistance Sensors, Electrical Current Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio	Objectives:	1. Learning New Persp	pective in Nanoelectroncs	
4. Understanding and assessment of electronic properties for sensor development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications Units I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transistor or - Single-Electron Transistors; Nanorobotics and Nanomanipulation: Molecular Nanowires-Organic LED, Organic FETs-CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors- V NANOSENSORS Electronagnetic Sensors - Picesure Sensors, Gas and Liquid Flow Sensors Position Sensors - Obisensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors		1 0		
development and application. 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications Units I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist- or - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors- Electrical Resistance Sensors, Electrical Current Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging. Recommended 1. Introduction To Molecular Electronics, M.C. Pettey Online) Nano Systems, K.E. Drexler, Wiley (1992). Recommended 1. Introduction To Molecular		3. Understanding the fur	nctioning of various electroni	c devices.
 5. Compare and evaluate the nano enabled electronic properties for development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications Units I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist- or - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors- Electrical Resistance Sensors, Electrical Current Sensors - Blectrical Voltage Sensors - Dytical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging. Reading List (Printand Online) Nano Systems, K.E. Drexler, Wiley (1992). Recommended Introduction To Molecular Electronics, M.C. Pettey The Physics And Chemistry Of Nanosolids, Frank J. Owens And 				rties for sensor
 development of smart devices. 6. Conceptualization of nanoscale electronic phenomena for societal applications Units I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transistor - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs-CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors - Electrical Resistance Sensors, Electrical Current Sensors - Mchanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging. Reading List (Printand Q01). Nano Systems, K.E. Drexler, Wiley (1992). Recommended 1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And 		development and applica	tion.	
 6. Conceptualization of nanoscale electronic phenomena for societal applications Units I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transistor or - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs-CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena - Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors- Electrical Resistance Sensors, Electrical Current Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging. Reading List (Printand (2003). Nano Systems, K.E. Drexler, Wiley (1992). Recommended 1. Introduction To Molecular Electronics, M.C. Pettey The Physics And Chemistry Of Nanosolids, Frank J. Owens And 		5. Compare and evaluat	e the nano enabled electronic	properties for
applications Units I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist- or - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors. Heat Sensors- V NANOSENSORS V NANOSENSORS Electromagnetic Sensors - Electrical Resistance Sensors, Bagnetism Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging. Reading List (Printand Online) I. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanos		development of smart de	vices.	
Image:		6. Conceptualization of	f nanoscale electronic phenon	nena for societal
I Basic Concept of Nanoelectrics- New Perspectives- New Ohm's Law- Density of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- Nanotransistors II SEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transistor or - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs-CNT And Graphene FET, Si NW FET. III ELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications. IV NANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors. Heat Sensors- V NANOSENSORS Electromagnetic Sensors - Electrical Resistance Sensors, Electrical Current Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging. Reading List (Printand Online) I. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And Partice		applications		
of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- NanotransistorsIISEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist- or - Single-Electron Transistors; Nanorobotics and Nanomanipulation, Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET.IIIELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors- Electrical Resistance Sensors, Electrical Current Sensors - Chemical Sensors - Dictal and Radiation Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)I. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And			Units	
of states- Fermic Function- Types of Conductance- Ballastic Conductance- Resistance: Ballistic to Diffusive- NanotransistorsIISEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist- or - Single-Electron Transistors; Nanorobotics and Nanomanipulation Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET.IIIELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors- Electrical Resistance Sensors, Electrical Current Sensors - Chemical Sensors - Dical and Radiation Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)I. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And	T	Basic Concept of Nanoel	ectrics- New Perspectives- N	ew Ohm's Law- Density
Conductance- Resistance: Ballistic to Diffusive- NanotransistorsIISEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist- or - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET.IIIELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors- Electrical Resistance Sensors, Electrical Current Sensors - Bictrical Voltage Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).OnlineNano Systems, K.E. Drexler, Wiley (1992).Recommended1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And	1			
IISEMICONDUCTOR NANODEVICES Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist- or - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET.IIIELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors- Electrical Resistance Sensors, Electrical Current Sensors - Electrical Voltage Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)I. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And			• -	
Single-Electron Devices, Nano Scale MOSFET – Resonant Tunnelling Transist- or - Single-Electron Transistors; Nanorobotics and Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET.IIIELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-VNANOSENSORS Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)I. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And	п			
orSingle-ElectronTransistors;Nanoroboticsand Nanomanipulation; Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET.IIIELECTRONIC AND PHOTONIC MATERIALS Single ElectronTunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors- Heat Sensors-VNANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)I. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And				sonant Tunnelling Transist
Molecular Nanowires-Organic LED, Organic FETs- CNT And Graphene FET, Si NW FET.IIIELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-VNANOSENSORS Electromagnetic Sensors - Electrical Resistance Sensors, Electrical Current Sensors - Mechanical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)I. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And				
CNT And Graphene FET, Si NW FET.IIIELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors- Heat Sensors-VNANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors - Mechanical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And		e		and Ranomanipulation,
IIIELECTRONIC AND PHOTONIC MATERIALS Single Electron Tunnelling Phenomena- Coulomb Blockade - Coulomb Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-VNANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors, Electrical Voltage Sensors, Cas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And			e	
SingleElectronTunnellingPhenomena-CoulombBlockade -CoulombStaircase - RSD and ResonantTunnellingTransistor-QuantumStructuresBasedLeds - OLED andPhotoDetectors-MagneticQuantumDotsandTheirApplications.IterNANOSENSORSBASICSMicro and Nano -Sensors, Fundamentals of Sensors, Biosensor, MicroFluids,MEMSAnd NEMS, Packaging and Characterization of Sensors, Method ofPackaging At ZeroLevel, DyeLevel And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-VNANOSENSORSElectromagneticSensors-ElectricalCurrent Sensors, ElectricalSensors,ElectricalVoltageSensors, ElectricalPower Sensors, Magnetism Sensors - Mechanical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Nano Systems, K.E. Drexler, Wiley (1992).1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And	ш			
Staircase - RSD and Resonant Tunnelling Transistor- Quantum Structures Based Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-VNANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And				b Blockade - Coulomb
Leds - OLED and Photo Detectors- Magnetic Quantum Dots and Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-VNANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (1992).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And		-	-	
Their Applications.IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-VNANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And			e	•
IVNANOSENSORS BASICS Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-VNANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And			o Detectors Wagnetic Quan	
Micro and Nano - Sensors, Fundamentals of Sensors, Biosensor, Micro Fluids, MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-VNANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And	IV		CS	
MEMS And NEMS, Packaging and Characterization of Sensors, Method of Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-VNANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And				Biosensor. Micro Fluids
Packaging At Zero Level, Dye Level And First Level, Thermal Energy Sensors, Temperature Sensors, Heat Sensors-VNANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And				
Temperature Sensors, Heat Sensors-VNANOSENSORSElectromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And				
VNANOSENSORS Electromagnetic Sensors- Electrical Resistance Sensors, Electrical Current Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And				
Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And	V			
Sensors, Electrical Voltage Sensors, Electrical Power Sensors, Magnetism Sensors - Mechanical Sensors - Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And		Electromagnetic Sensor	s- Electrical Resistance Se	ensors, Electrical Current
Sensors - Mechanical Sensors -Pressure Sensors, Gas and Liquid Flow Sensors, Position Sensors - Chemical Sensors - Optical and Radiation Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And		-		
Position Sensors - Chemical Sensors - Optical and RadiationSensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And			-	-
Sensors - Gas Sensor - Bio Sensors - DNA Based Biosensors-Packaging and Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And				-
Method of Packaging.Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And			1	
Reading List (Printand Online)1. Nano Electronics And Information Technology, W. Ranier, Wiley (2003).Recommended Texts1. Introduction To Molecular Electronics, M.C. Pettey 2. The Physics And Chemistry Of Nanosolids, Frank J. Owens And				0 0
(Printand Online)(2003).Nano Systems, K.E. Drexler, Wiley (1992).Recommended Texts1.Introduction To Molecular Electronics, M.C. Pettey 2.2.The Physics And Chemistry Of Nanosolids, Frank J. Owens And	Reading List		d Information Technology, W	/. Ranier, Wiley
Online)Nano Systems, K.E. Drexler, Wiley (1992).Recommended1.Introduction To Molecular Electronics, M.C. PetteyTexts2.The Physics And Chemistry Of Nanosolids, Frank J. Owens And				· ·
Recommended Texts1.Introduction To Molecular Electronics, M.C. Pettey The Physics And Chemistry Of Nanosolids, Frank J. Owens And	Online)		xler, Wiley (1992).	
Texts2.The Physics And Chemistry Of Nanosolids, Frank J. Owens And				ettey
·				•
		Charles	•	
P. Poole Jr., Wiley Interscience (2006)			erscience (2006)	

	41				
3. Nanotechnology	Enabled	Sensors,	Kouroush	Kalantar –	Zadeh,Benjamin
Fry, Springer (2007))				

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

4 SEMESTER III Core-VIII

PROPERTIES OF NANOMATERIALS

Twno	atad Cau	nga Austaamagu	Credits : 4
-		rse Outcomes: ful completion of the course, student will be able to:	
JII UI		ad fundamental concepts and influence of grain size and	
L	morpholo	1 0	
		ties of nanomaterials	
2		gained subject knowledge towards understanding the mech	anisms
		in functional materials	
8		and understand the nanomaterials superior properties by	
	comparin with bulk	-	
		cquired knowledge and understanding on effect various	
	processin		
	parameter	s and its needs for technological advancements	
	-		·
Unit:	1	ELECTRONIC PROPERTIES	18 hours
Mate	rials - Dep	d Shape in Electronic Properties, Band Structures, Brillouin oletion region - Confinement and Transport in Nanostructu iffusiveand Ballistic - Ballistic Transport - Coulomb Blocka	re Types of
Unit:	:2	MAGNETIC PROPERTIES	18 hours
lize	dependen	ce - Surface magnetism - Magnetic anisotropy and domain	s in small particles ·
	-	and nanostructures - Substrate effects, Oscillatory exchange	=
		eling - Magnetism in reduced dimensional systems: ze	
		nce: OMR, AMR, GMR, TMR, BMR and CMR.	io, one and tho
-14B1			
U nit :	3	DIELECTRIC PROPERTIES	18 hours
Carri	er transpo	rt through grain boundaries –Impedance spectroscopy – Gra	ain boundary
Scho apac	ttky poten	tial barrier height (Φ b) model: effect of bias and temperatur electric breakdown - Nanodielectrics: future insulating mate	e – Voltage tunable
U nit :		OPTICAL PROPERTIES	18 hours
3and	Gap Engi	neering - Morphology and size effects of nanocrystalline ser	miconductors and
netal	ls –Effecti	neering morphology and size effects of nanoerystamme set	
stim	ation from	ve mass approximation theory – Nanoshells - Crystallite	
onve	ersion.		size distribution
		ve mass approximation theory - Nanoshells - Crystallite	size distribution
U nit :		ve mass approximation theory - Nanoshells - Crystallite	size distribution
Aicro	:5	ve mass approximation theory - Nanoshells - Crystallite	size distribution
		ve mass approximation theory – Nanoshells - Crystallite n absorbance – Fluorescence: Stokes and Anti Stokes Shifts	size distribution – Up and Down
Vano	o Hardne	ve mass approximation theory – Nanoshells - Crystallite n absorbance – Fluorescence: Stokes and Anti Stokes Shifts MECHANICAL PROPERTIES 18 hours	size distribution – Up and Down , Plastic Nature of
	D Hardne ceramics,	ve mass approximation theory – Nanoshells - Crystallite n absorbance – Fluorescence: Stokes and Anti Stokes Shifts MECHANICAL PROPERTIES 18 hours ss, Nanoindentation, Fracture Toughness, Superplasticity	size distribution – Up and Down , Plastic Nature of tructured Materials
nflue	o Hardne ceramics, enceof Por	ve mass approximation theory – Nanoshells - Crystallite n absorbance – Fluorescence: Stokes and Anti Stokes Shifts MECHANICAL PROPERTIES 18 hours ss, Nanoindentation, Fracture Toughness, Superplasticity Nanomembrances - Inter Connected Pores - Bulk Nanost	size distribution – Up and Down v, Plastic Nature of tructured Materials Interactions at Low
nflue ind	D Hardne ceramics, enceof Por High Tem	ve mass approximation theory – Nanoshells - Crystallite n absorbance – Fluorescence: Stokes and Anti Stokes Shifts MECHANICAL PROPERTIES 18 hours ss, Nanoindentation, Fracture Toughness, Superplasticity Nanomembrances - Inter Connected Pores - Bulk Nanostrosity. Hall-Petch Relation, Microstructure – Dislocation	size distribution – Up and Down v, Plastic Nature of tructured Materials Interactions at Low Materials; Methods

	TOTAL LECTURE HOURS	90 hours
Text	Book(s)	
1	Springer Handbook of Nanotechnology- Ed. by B. Bhushan, Springer	er-Verlag (2004)
2	Magnetic Materials: Fundamentals and Applications by Nicola A. S	paldin, Cambridge
	University Press, 2nd Edition, (2018)	
3	The Chemistry of Nanomaterials: Synthesis, Properties and Applicat	tions, C.N.R. Rao,
	A.Muller, A. K. Cheetham (Eds), Wiley-VCH Verlag (2004)	
4	Dan Guo et al, Journal of Physics D: Applied Physics (2018) Vol. 47	7, 013001
Refe	rence Book(s)	
1.		
	Impedance Spectroscopy: Theory, Experiment, and Applications, E	Barsoukov and
	JRoss MacdonaldWiley (2018)	
2.	H. Gleiter, Progress In Materials Science, Vol.33, p.223 (1989)	
Relat	ted Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	NPTEL: Defect Structure & Mechanical Behaviour of Nanomaterial	ls
	https://www.youtube.com/watch?v=bwZW96c743A	
2	YOUTUBE: Introduction to Nanomaterials	
	https://www.youtube.com/watch?v=qUEbxTkPIWI	

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Strong - 3, Medium – 2, Low – 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
C05	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to Pos	3	2	3	3	3

SEMESTER-III

Core - IX

Course Code	Course Name:	Characterization	Credits: 4				
	Techniques of	Nanomaterials –II					
Lecture Hours: (L)	Tutorial	Lab practice Hours: (P) per	Total: (L+T+P)				
per week	Hours:	week	Hours per week				
Comme Code comme	(T) per week						
Course Category:	Year & Semester:	Admission Year:					
Pre requisite:		buld have the fundamental kn functions of cell, biochemis function					
Links to other courses							
Learning Objectives:	 Visualiz Understa Understa Reveal t 	jectives of this course are to: e the nanomaterials to unders and nanostructure of materials and the microstructure of mat he thermal behavior of the na g bio-materials using proper t	s erials nomaterials				
Course Outcome 1	TT 1 / 1'	the purpose of characterization	C (1 ' / ' 1				
2 3 4 5 6	 Explore the prop Understanding Study the prop Understanding technique. Understanding material. 	operties of nanomaterials for t the principles of characteriza perties of nanomaterials the instrumentation involved the suitability of the characte pretation of the results obtaine	tion techniques in the characterization rization for the particular				
		Units					
I Unit I Morphological studies Principles, Overview of Instrumentation and Sample prepar Experimental techniques adopted in: Scanning Electron Microscopy: and FESEM -Transmission Electron Microscopy (TEM) – HR' application for analysis of Nanomaterials.							
II U	nit II Materials	defects studies					
Sc Al Sc M	Unit II Materials defects studies Scanning Tunnelling Microscopy (STM), Atomic Force Microsc AFM)-Non-contact-contact- Tapping- conducting mode Near F Scanning Optical Microscopy; Scanning capacitance Microscop Magnetic Force Microscopes MFM)- Chemical Force Microscope (CF Applications for analysis of nanomaterials.						

III	Unit III Microscopic characterization
	Optical microscopes- Use of polarized light microscopy – Phase contrast
	microscopy – Interference Microscopy – hot stage microscopy - surface
	morphology – Etch pit density and hardness measurements- Confocal
	Microsocopes.
	1
IV	Unit IV Thermal analysis
	Principle and Instrumentation of Thermogravimetry; Differential Thermal
	Analysis and Differential scanning calorimetry-Importance of thermal
	analysis for nanostructures.
V	Unit V Bio-materials characterization
	New Advances and challenges in biological and biomedical materials
	characterizations- Dynamic light scattering spectroscopy. Confocal
	Microscopes - Confocal Raman – Application in Nanobiotechnology.
	Fluorescence Microscope
Reading List(Print	<u>www.technologynetworks.com</u> > sem-vs-tem-331262
and Online)	onlinelibrary.wiley.com > abs > 9780470022184.hmm319
	www.umassmed.edu > maps > confocal-explanation
mmendedTexts	References:
	J.Goldstein, D. E. Newbury, D.C. Joy, and C.E. Lym, "Scanning
	Electron Microscopy and X-ray Microanalysis", 2003.
	S.L. Flegler, J.W. Heckman and K.L. Klomparens, "Scanning and
	Transmission Electron Microscopy: An Introduction",
	WH Freeman & Co, 1993.
	P.J.Goodhew, J.Humphreys, R.Beanland, "Electron Microscopy and
	Analysis",
	R.Haynes, D.P.Woodruff and T.A.Talchar, "Optical Microscopy of
	Materials", Cambridge University press, 1986.
	R.M.Rose, L.A.Shepard and J.Wulff, "The Structure and Properties of
	Materials", Wiley Eastern Ltd,

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Mapping with Programme Outcomes

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to POs	3	2	3	3	3

Strong - 3, Medium – 2, Low – 1

Core – X

Course Code	Course Name:	-Advanced	Credits: 4
	manomaterials for	or	
	Nanotechnology	У	
Lecture Hours: (L)	Tutorial	Lab practice Hours: (P) per	Total: (L+T+P)
per week	Hours:	week	Hours per week
	(T) per week		
Course Category:	Year &	Admission Year:	4
	Semester:		
Pre requisite:	The student she	ould have the fundamental k	nowledge in nanomaterials
	used in the field	d of nanotechnology like mag	gnetic, electric
	nanomaterials s	sensors and medical devices	
Learning Objectives:	The main obje	ctives of this course are to:	
	1. Know abo	out magnetism and its propert	ties
	2. Gain know	wledge in thermoelectric mat	erials
	3. Understar	nd the properties of polymeric	c nanoparticles
	4. Create kn	owledge in application of nar	nomaterials
	5. Gain theo	retical knowledge in the deve	elopment of biosensors and
	their uses	in medical field.	

	4
Course Outcome	1. Understanding the process of nanoparticles synthesis methods.
	2. Development of knowledge about magnetosomes.
	3. Learn about working and types of biosensors
	4. Applications of various nanomaterials in medical field
	5. Demonstrate the pharmaceutically important nanomaterials as
	therapeutic agents
	Units
I	Nanostructured Magnetism: Nanostructure magnetism, Effect Bulk
	nanostructuring of magnetic property, Giant and colossal magnetic resistance,
	Nanomagnetic materials, Paramagnetism in metallic nanoparticles, Semiconduction quantum dots.
	Semeonduction quantum dots.
II	Thermoelectric Materials: Concept of phonon, Thermal conductivity specific
	heat, exothermic and endothermic processes, Different types of thermoelectric
	materials, Bulk properties, One dimensional and composite thermoelectric
	materials, Applications.
III	
111	Structure Properties of Polymeric Nanomaterials: Structure-property
	relationship, stress-strain behaviour, crystalline melting point, effect of chain flexibility and other steric factors, entropy and heat of fusion, glass transition
	temperature, relationship between Tm and Tg. Effect of molecular weight,
	property requirements and its utilization. Synthetic procedure commercial
	polymers, Fire retarding and biomedical polymers.
IV	Nanocomposites
	Definition of nanocomposites - Nanofillers, Classification of nanofillers,
	Synthesis and properties of nanofillers - Types of nanocomposites –
	Synthesis of nanocomposites: Direct mixing, solution mixing, In-situ
	polymerization - Polymer/ Metal oxide nanocomposites, diblock copolymer
	based nanocomposites, Polymer/CNTs and Polymer/Nanoclay based
	composites and their properties and functional applications
V	Nanotechnology for biophotonics
	The interface of bioscience, nanotechnology and photonics - Semiconductor
	quantum dots for bioimaging – Metallic nanoparticles and nanorods for
	Biosensing – Up-converting nanophores - Inorganic nanoparticles – Pebble
	nanosensors for Invitro Bioanalysis - Nanoclinics for optical diagnostics and Targeted therapy
Reading	1 Solis state electronic device, Ben G Streetman, Prentice Hall of India
List (Print	Pvt Ltd., New Delhi 1995.
and online)	2. Organic Photovoltaics Biophotonics, Optical Science and Engineering for
	the 21st Century, (Ed.) Xun Shen and Roeland Van Wijk,
	3. NANO BIOPHOTONICS: Science and Technology, (Eds) Hiroshi Masuhara, Satoshi Kawata and Fumio Tokunaga, Elsevier (2007).
	4. Polymer-Clay Nanocomposites, T.J. Pinnayain, G.W.Beall, Wiley, New
	York, 2001.
	Composite Materials, Deborah D.L.Chung, Springer, 2002.

Recommended	References							
Texts	1. Semiconductor for solar cells, H J Moller, Artech House Inc, MA, USA, 1993.							
	2 Materials, Device Physics and Manufacturing Technologies, (eds. C.							
	Brabec, V. Dyakonov, U. Scherf), 2nd Ed., Wiley-VCH, Germany, 2014.							
	3. Text Book of Polymer Science, F.W. Billmeyer Jr, Wiley.							
	4. Polymer Science, V.R. Gowariker, N.V. Viswanathan and J. Sreedhar, Wiley-							
	Eastern.							
	5. Introduction to Biophotonics, Paras N. Prasad, John Wiley and Sons, New Jersey, (2003							
	 6. Nanocomposites - Science and Technology - P. M. Ajayan, L.S. Schadler, P. V. Braun, Wiley-VCH, 2004. 							

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low – 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

Elective course - V

Course Code	Course Name:	Biomaterials and	Credits: 3				
	Nanobiotechno	ology for Tissue Engineering					
Lecture Hours: (L) per week	Tutorial Hours: (T) per week	Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week				
Course Category:	Year & Semester:	Admission Year:					
Pre requisite:	fundaments of metabolism of o	who are taking this course biomaterials, basics in biolo carbohydrates and Proteins a of cellular function	ogical cell, tissues and the				
Learning Objectives:	Learn t andits applicatio Understand the	ctives of this course are to: the types of biomaterials, biomaterial used in implant ion in orthopedics and dental- e importance of biomaterials used for cartilage and ant and its mode of failure					
Course Outcomes	 Unders anddifferentiate Evalua practicalaspects Comprenentiate Comprenentiate Comprenentiate Comprenentiate Critical areas of applicat Demoning Generation need Study to Vitalorgans and 	 Critically assess and outline the nanotechnology for all of application Demonstrate the new properties of Nano materials for next 					

Units	Total -48hrs
Ι	MATERIALS FOR IMPLANT
	Orthopedic implants – material s used – modes of failure – wear debris,
10h	stress and strain imbalances at the tissue implant interface. Dental: Dental
	materials used – modes of dental implant failure – debris, stress and strain
	imbalances at the tissue implant interface
II	CARTILAGE IMPLANT
101	Cartilage materials used – modes of cartilage implant failure –wear debris,
10h	stress and strain imbalances at the tissue implant interface; Vascular
	materials used – modes of vascular implant failure – wear debris; stress
	and strain imbalances at the tissue implant interface
III	BLADDER IMPLANT
8h	Bladder overall view, Bladder implant materials used – modes of bladder
011	implant failure – stress and strain imbalances at the tissue implant interface
IV	BIOLOGICAL EFFECT OF NANOMATERIALS
	Biological response of Nanomaterials used as implants – biological
10h	response of implanted materials - desirable and undesirable reactions of
	the body with implanted materials: Protein interactions with implanted
	Materials
V	ADVANTAGE OF NANOMATERIALS
10h	Advantages of Nanomaterials used as implants - cellular recognition of
	Proteins Adsorbed on material surfaces – adhesion – migration
	differentiation – Cellular Extra cellular Matrix deposition leading to tissue
	regeneration – foreign-body response – inflammatory response

Reading List(Print	https://www.verywellhealth.com/tissue-engineering-4580368								
and Online)	ttps://www.liebertpub.com/doi/10.1089/ten.tec.2019.0344								
Recommended	1. William A. Goddard, Sergey Edward Lyshevski, Donald W.								
Texts	Brenner (Ed) Handbook of Nanoscience, Engineering and Technology								
	CRC press 2003								
	2. Joachim Schummer, Davis Baird (Ed) Nanotechnology								
	Challenges: implications for philosophy, Ethics and society ; World								
	scientific ; 2006								
	3. William Sims								
	Bainbridge, Mihail C. Roco (Ed) Societal implication of Nanosciences								
	and Nanotechnology;Springer;2001								
	4. Jon J. Kellar (Ed) Functional fillers and nanoscale minerals;								
	new markets/ new horizonsSME science; 2006								
	5. Davis Baird, Alfred Nordmann, Joachim Schummer (Eds)								
	Discovering the nanoscale; IOP press; 2004								

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low – 1 Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

Course Code	Course Name N	Nanoscience Practical III	Credits: 3
Lecture Hours: (L) per week	Hours: (T) per week	Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week
Course Category:	Year & Semester:	Admission Year:	
Pre requisite:	Fundamental an characterization	d theoretical knowledge on pa techniques	reparation and
Links to other courses			
Learning Objectives:	 Acquire andmeth Apply to ofthe ma Provide different Master equipme appropri Understa 	es opportunities to synthesize capproaches the technical skills in ents,characterizing the acquire	s and their characterization nderstanding the structural the materials using handling lab ed data and analyze using

Part:1	Characterization of Compound Nanomaterials
	 Synthesis of TiO₂ Nanoparticles by Sol-Gel Method and Characterize Using XRD And SEM Analysis. Synthesis of Ceria Nanoparticles and Characterize Using XRD And SEM Analysis. X-Ray Diffraction Studies of Synthesised of Tio₂ Nanoparticles And Measuring The Crystallite Size. Synthesis Of Ceria Nanoparticles by Co-Precipitation Method.
Part:2	Characterization of Specific Surface Properties
	 SERS Studies Of Gold and Silver Nanoparticles Synthesis Of Quantum Dots andPhotoluminescence Studies. Characterization of Carbon dots using UVSpectroscopy Band gap studies of Metal oxide semiconductors using UV-Vis Spectroscopy
Reading List(Print and Online)	

Recommended	4. Inorganic Chemistry : Principles Of Structure And Reactivity – J.E.
Texts	Huheey, E.A. Keiter and R.L. Keiter, IVEd.
	5. Physical Chemistry, Atkin
	6. Text Book Of Quantitative Chemical Analysis – A.I. Vogel, VI
	Ed, Pearson Education Ltd, 2001

Manuals

Lab	Manuals
1	Das, S. and Saha, R. 2020. Microbiology Practical Manual. CBS Publishers and
	Distributors
	(P) Ltd., New Delhi, India.
2	Arora, B. and Arora, D.R. 2009. Practical Microbiology. 2 nd ed. CBS
	Publishers and
	Distributors (P) Ltd., New Delhi, India.
3	Jha, D. K. Laboratory Manual on Plant Pathology. 2 nd ed. Pointer Publishers,
	Jaipur, India.
4	Chmielewski, J. G. and Krayesky, D. 2013. General Botany
	laboratory Manual.
	AuthorHouse, Bloomington, USA.
5	Jha, D. K. 2018. Laboratory Manual on Plant Pathology (English). Pointer
	Publishers, Jaipur.
6	McMahon, K., Levetin, E. and Reinsvold, R. 2001. Laboratory Manual for
	Applied Botany.
_	McGraw-Hill Education, New York, USA.
7	Bendre, A. M. 2010. A Text Book Of Practical Botany – 1. Rastogi
	Publications, Meerut,
0	India.
8	Sivakumar, K. 2016. Algae- A Practical Approach. MJP Publishers, Chennai, India.
9	Gupta, V.K., Tuohy, M.G., Ayyachamy, M., Turner, K.M. and O'Donovan, A.
	2013.Laboratory Protocols in Fungal Biology: Current Methods in Fungal
	Biology. Springer,
	London, UK.
10	Garg, N., Garg, K. L. and Mukerji, K. G. 2010. Laboratory Manual of Food
	Microbiology.
	IK International Publishing House Pvt. Ltd., New Delhi, India.
11	Morello, J.A., Mizer, H.E., Granato, P.A. 2004. Laboratory Manual and
	Work Book in
	Microbiology. McGraw-Hill Education, New York, USA.

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
C05	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

Semester III Skill Enhanced course - II Green Manufacturing Technolo

Semester	Course Code	Title of the Course	Core/Elective/ Soft Skill	Credits
IV Sem		Green Manufacturing Technology	Soft skill	2
Learning objectives	 Identify Recogni Underst Prevent Keep a 6 	ion of this course the students will be abl waste and pollutants ize opportunities to improve efficiency. and life cycle impacts and Conserve reso pollution and direct control on the quality of the formu nce of standards	ources.	the
Title of the Course:	Green Man	ufacturing Technology		
Credits:	2			
Course Objectives		te awareness in current green practicular knowledge in International green		

	3
	Process3. To enlighten the students with knowledge about water pollution and its effects on
	the environment
	4. To introduce the concept of environmental design and industrial ecology.
	5. To impart knowledge about green plastics and nanocomposites manufacturing
	from plants and microbes.
	Units
Ι	GREEN MANUFACTURING TRENDS (9 h)
	Green Manufacturing: Fundamentals and Applications - basic definitions and
	issues surrounding green manufacturing at the process, machine and system -
	government motivations for green manufacturing - traditional manufacturing
	to green manufacturing -economic issues- surrounding green manufacturing -
	the areas of automotive, semiconductor and medical areas as well as in the
	supply chain and packaging areas Green Manufacturing.
II	Sustainable green Manufacturing (9 h)
	Green Manufacturing processes, requirements and risk, International green
	manufacturing standards and compliance, Green rapid prototyping and rapid
	manufacturing, Green flexible automation, Green Collaboration Processes. Alternative
	energy resources, globally green Manufacturing supply chains and logistic networks. Sustainable Green Manufacturing System.
III	Waste Management (9 h)
111	Sustainability and global conditions, Materials and Solod waste Management, Energy
	Management, Chemical Waste Management, and green chemistry, Climate change and
	air emissions, origin of Waste-water, Water pollutants and their effects. Measurement
	of DO, BOD, COD and Pesticides as water Pollutants. Water supply and Waste-water
	Management
IV	Industrial Ecology (9 h)
	Material flow in Chemical Manufacturing, Industrial Parks, Assessing opportunities
	for waste exchanges and by-product synergies, Life cycle Concepts, Product
	shewardship and green engineering, Regulatory, social and business environment for
	green manufacturing. Green Supply chains. Present state of green Manufacturing.
V	Green Plastics and nanocomposites (9 h)
	Introduction to commercial plastics and elastomers, Natural Rubber, Modified Natural
	rubber and bends. Polyesters from microbial and plant factories (PLA – Polylactic
	acid, PHB-Poly hydroxybutyrate and PHA – Polyhydroxyalkanoates). Plastics from Vegetable oils, cellulose and starch-based materials. Nanocomposites: Natural fillers,
	Fibres and clay nanocomposites, biodegradability, life cycle assessment of using
	natural materials
Recommended	1. T. David Allen and David R. Shonnard, Green engineering, Prentice Hall NJ,
Texts	(2002).
	2. David Dornfeld, Green manufacturing fundamental and applications, Prentice
	hall (2002).
	3. G. Sammy Shinga, Green electronics design and manufacturing, Prince
	publications (2008).
	4. James clark, Green chemistry, Blackwell publishing (2008).
	5. Paulo Davim, Sustainable Manufacturing, Wiley publications (2010).
	6. Frank Kreith, George Tchobanoglous, Solid waste management, McGraw Hill
	(2002).
	7. E. S. Stevens, Green plastics, Princeton university press (2002).
	8. U. Robert Ayres, A Handbook of Industrial Ecology, Edward elgar publishing
	(2002).

Mapping with	Programme	Outcomes
--------------	-----------	----------

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	3	3	3	1	3	3	2	3	3	3
CO2	2	2	2	2	3	3	3	3	3	2
CO3	2	2	2	3	3	3	2	2	2	2
CO4	2	3	2	3	3	3	2	3	2	3
CO5	2	2	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	2	3
CO2	2	3	2	2	2
CO3	3	2	3	3	2
CO4	3	3	2	2	3
C05	3	3	3	2	3
Weightage	14	14	13	11	13
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

SEMESTER-IV

Core-XI

Course Code	Course Name:	Biomedical	Credits 4			
	Nanotechnolog	y				
Lecture Hours : (L)	Tutorial	Lab practice Hours : (P) per	Total: (L+T+P)			
per week	Hours :	week	Hours per week			
	(T) per week					
Course Category:	Year &	Admission Year:				
	Semester :					
Pre requisite:	The Student should have the fundamental knowledge in biomaterials,					
	Biological Cell, functions of cell, biochemistry of biomolecules and its					
	relation to cell function					
Links to other courses	The Student should know about the fundaments of biological system					
	and also the con	cept of Nano materials fabric	ation technology			
Learning Objectives:	1. Unders	standing the basic of Biocerar	nics in Nano science and			
	differentiate bet	ween nanomaterials and bulk	materials			
	2. Evalua	te and critically review the th	eoretical and practical			
	aspects of Tissu	e engineering methods and its	s application-			
	3. Comp	rehending the novel function	tion resulted from the			
	-	ctures using scientific and t				
	Nano biotechnology –					
	4. Critica	lly assess and outline the nar	notechnology in the area of			
	Drug delivery–	-				

Course Outcomes	On the successful completion of the course, student will be able to
	 Understanding the basic of Biomedical sciences and Nano scienceand differentiate between nanomaterials and bulk materials
	2. Evaluate and critically review the theoretical and practical aspectsof Nano materials application.
	3. Summarize the concepts in Biomedical nanotechnology
	4. Critically assess and outline the nanotechnology for all areas ofbiomedical application
	 Demonstrate the new properties of Nano materials for next generation needs
Units	Total- 90hrs
Ι	BIO CERAMICS FOR IMPLANT COATING
18h	Calcium phosphates - hydroxy epilates Ti ₆ Al ₄ V and other biomedicalalloys
	- implant tissue interfacing - metal organic CVD - use of tricalcium
	phosphate - biomimetic and solution based processing - osteoporosis -
	osteoplastic – regeneration of bones by using bio compactable ceramics

II	TISSUE ENGINEERING
16h	Scaffolds for tissue fabrications – materials for scaffolds – materials for
1011	hydrogel scaffolds – scaffolds fabrications technologies – textile
	technologies – particulate –leaching techniques – phase separation – design
	of three-dimensional pore architecture – nano-featured and bioactive
	scaffolds – nano-fiber scaffolds – nanocomposite scaffolds –
	- scaffolds for stem cells - micro and nanopatterned scaffolds - scaffolds
	and stem cells – Engineering biomaterial to control cell function – fibrous
	proteins and tissue engineering
III	DRUG DELIVERY
18h	Diagnosis of diseases, treating and preventing of diseases - targeted for
	drug delivery – ligand coupled nanoparticle features – methods forcoupling
	targeting ligands to nanoparticles - targeting modalities - barriers to
	tumor targeting in vivo – MRI contrast enhancement -
	future line of action – Gene delivery
IV	NANOPHARMACY
18h	Bio interactive hydro gels – PEG coating and surface modifications –PEG
1011	hyrogels patterned on surfaces – PEG based hydrogels- Nanopharmacy-
	multi-targeted drugs – delivery of nucleic acids- barriers to therapeutic
	applications – interaction of organic molecules
	11 U
	of the drug with pathological tissue – ligand targeted nanoparticles
	drug delivery
V	NANOMEDICINE
18h	Formation of nucleic acid core particle – protective steric coating – surface
	exposed ligands targeting specific tissues –biocompatible core-shell
	nanoparticles for medicine – configuration of core – shell structure with
	different cores, shells and biomolecules-least toxicity- nanocapsules-
	methods of changing surface characteristics- future prospects.
Reading List(Print	https://link.springer.com/content/pdf/10.10090Fs11834-013-6063-
–	
and Online)	0.pdf
	http://nopr.niscair.res.in/bitstream/123456789/5224/1/IJEB2045(2)2
D	0160-165.pdf
Recommended	1. Robert.W.Kelsall, Ian.W.Hamley, Mark Geoghegan (Ed), Nano
Texts	ScaleScience And Technology, John Wiley and son, ltd., 2005
	2. H.Fujita (Ed), Micromachines As Tools For Nanotechnology,
	Springer, 2003
	3. Mick Wilson Kamali Kannangara Geooff Smith Michelle,
	SimmonsUrkhard Raguse, Nano Technology, Overseas India private Ltd.,
	2005.
	4. Gunter Schmid, Nano Particles, Jhon wiley and sons limited, 2004
	5. K.K.Jain, Nano Biotechnology, Horizions Biosciences, 2006
	6. Malsch, N.H., "Biomedical Nanotechnology", CRC Press. (2005).
	7. Mirkin, C.A. and Niemeyer, C.M., "Nanobiotechnology II: More
	Concepts and Applications", Wiley-VCH. (2007)
	8. Kumar, C. S. S. R., Hormes, J. and Leuschner C., "Nanofabrication
	Towards Biomedical Applications: Techniques, Tools, Applications, and
	Impact", WILEY -VCH Verlag GmbH & Co. (2005).

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

SEMESTER-IV

CORE XII

Course Code		- INDUSTRIAL	Credits: 4				
	NANOTECHN						
Lecture Hours: (L) per week	Tutorial Hours: (T) per week	Lab practice Hours: (P) per week	Total: (L+T+P) Hours per week				
Course Category:	Year & Semester:	Admission Year:					
Pre requisite:	Biological Cell,	The student should have the fundamental knowledge in biomaterials, Biological Cell, functions of cell, biochemistry of biomolecules and its elation to cell function					
Links to other courses							
Learning Objectives:	 The main objectives of this course are to: Identification of industrially relevant materials Summarize suitability of nanomaterials for industries. Interpretation and employment of nanomaterials for industrial needs. Evaluation and critical assessment of nanomaterials for various industrial application. Review the industrial development and relevant nanomaterials supply with required functionalities. 						
Course Outcome	 6. Understanding the role of different nanomaterials and their importance. 7. Development of new combination of nanomaterial based on theirproperties for future needs. 8. Assess the role of nanomaterial for enhancing the application effect. 9. Critically assess nanomaterial ability for making industrial levelapplication. 10. Demonstrate the new properties of nanomaterials for next generationneeds. 						
		Units					
Fal Na Int Qu	brication and nostructures- Si egrated circuits	OR NANOSTRUCTURES AN Applications of different ilicon horizontal and vertic - Sensors- Electro optical s) – QD LASER- Quantum c id future trends.	types of semiconductor cal core shell Nanowires devices. Semiconductor				

II	NANOSCALE MAGNETIC MATERIALS
	Application In Magnetic Storage Devices - Storing and Reading Device
	- Current Trends of Spin Based Electronic Devices. Optical Storage
	Devices: Near Field Optical Recording- Holographic Data Storage- AFM
	Based Recording Technology.
III	NANO ELECTRO MECHANICAL SYSTEMS
	Overview- Nano-Electromechanical Systems - Fabrication Process- Choice
	of Materials, Performance of Different Structures - Advantages and
	Disadvantages of Different Approaches. Applications In Sensors, Micro
	Actuators - Extension to The Nanoscale.
IV	INDUSTRIAL APPLICATIONS OF NANOMATERIALS
	Nanoparticles And Micro Organism, Nano-Materials in Bone Substitutes
	and Dentistry, Food and Cosmetic Applications,
V	INDUSTRIAL APPLICATIONS OF NANOMATERIALS
	Textiles, Paints, Catalysis, Drug Delivery and Its Applications, Biochips -
	Analytical Devices, Biosensors.
Reading List(Print	1. Nano Electronics, Parag Diwan and Ashish Bharadwaj, Pentagen Press
e ·	(2006)
unu ommo)	Principles of Superconductive Devices Aad Circuits, C.W. Turner and
	T. Van Duzer (1981)
	3. Principles of Optical Electronics, A. Yariv, Wiley (1984)
	1. Introduction To Molecular Electronics, M C Petty, M R Bryce, D Bloor
Texts	(Eds.), Edward Arnold (1995)
Texts	
	2. Current Opinion In Solid State & Materials Science, D.D.C. Bradley,
	Vol. 1, 789 (1996)
	Nano Electronics And Information Technology, Rainer Waser, Wiely
	(2003)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	3	3	3
CO2	3	2	2	3	3	2	3	3	2	2
CO3	3	2	2	3	3	3	3	2	2	2
CO4	3	3	3	2	2	2	3	3	2	3
CO5	3	2	2	3	2	3	2	2	3	3

Mapping with Programme Outcomes

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	3	3
CO2	3	2	3	3	3
CO3	3	2	3	3	3
CO4	3	2	3	3	3
CO5	3	2	3	3	3
Weightage	15	10	15	15	15
Weighted percentage (rounded of) Course Contribution to Pos	3	2	3	3	3

SEMESTER-IV Elective Course-VI

Semester	Course Code	Title of the Course	Core/Elective/ Soft Skill	Credits
IV Sem		NANOTECHNOLOGY FOR FOOD AND AGRICULTURE	Elective	3

	1. Understanding the basic of Nanoscience and differentiate betweennanoand
	bulk materials
	2. Evaluate and critically review the theoretical and practical aspects of
	nanomerials preparation and application.
	Understanding the concepts and techniques in nanotechnology
	4. Critically assess and outline the nanotechnology for all areas of
	application
	5. Demonstrate the new properties of nanomaterials for next generation
	needs
Title of the	- NANOTECHNOLOGY FOR FOOD AND
Course:	AGRICULTURE
Credits:	4
Course Objectives	1. Define and identify functional materials for food industry.
	2. Understand and describe food and agricultural processes.
	3. Interpretation and application of the theories and protocols for soil andfood
	nutrient management.
	4. Differentiate different types of nanomaterials food sensing, nutrient
	management and packaging application.
	5. Evaluation and assessment of various functional materials for sensing,
	nutrient management and packaging processes.
	6. Development and employment of new nanoenabled functionalmaterialsand
	protocols for societal applications.
	Units
I	SENSORS FOR SOIL, SEED AND FOOD MONITORING
I	Introduction and Importance, Various Sensing Methods, Chemical and
	Biosensors, Sensors for Monitoring Soil, Seed and Food, Nanomaterials For
II	Intelligent Sensors. FUNCTIONAL MATERIALS
11	
	Functional Materials for Food and Agriculture Use - Super Absorbent
TT	Polymers, Coatings, Aerosols. Zeolites, Nano-Clays, Nano Emulsion,
III	NANOFERTILIZERS
	Nanofertilizer, Synthesis and Characterization. Fungicides, Herbicides –
	Pesticides. Types Of Nano-Formulations – Encapsulation of Pesticides. Release
TX 7	Studies, Smart Delivery, Bio- Efficacy and Bio-Safety.
IV	MICRO-NANO ENCAPSULATION
	Encapsulation – Principles – Micro and Nano-Encapsulation – Release
	Mechanism – Encapsulation Versus Traditional Delivery Method - Sorption
	And Release Of Nutrients. Encapsulation Technologies – Extrusion – Spray
	Chilling – Spray Coating – Spray Drying – Emulsion – Gel Particles.
V	NANOCOMPOSITES AND FOOD PACKAGING
	Introduction And Scope. Polymer Films and Nano Composites – Bio-Nano
	Composites - Fabrication Process – Equipments Used - Testing Standards
	- Nano Material in Food Packaging - Solid And Liquid Food - Safety IssuesOf
	Nano Food Systems

	05
Reading List (Print	1.Nano and Microencapsulation For Foods, Hae-Soo Kwak, Wiley (2018)
andonline)	
RecommendedTexts	1. Nanotechnologies In Food and Agriculture, Mahendra Rai, Caue
	Ribeiro, Luiz Mattoso, Nelson Duran, Springer (2015)
	2. Nanotechnology Applications In Food, Alexandru Grumezescu,
	Alexandra Oprea, Academic Press (2017)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	3	3	3	2	3	3	3
CO2	3	3	2	3	3	3	2	3	2	2
CO3	3	3	2	3	3	3	2	2	2	2
CO4	3	3	2	3	3	3	2	3	2	3
CO5	3	3	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	2	3
CO2	3	3	2	2	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	2	2	3
Weightage	15	15	10	10	15
Weighted percentage (rounded of) Course Contribution to POs	3	3	2	2	3

Semester IV Skill Enhanced course

	Basics	of Pharmaceutical Sciences and Q	uality	y Audit	
2	A 1		~		~

Semester	Course Code	Title of the Course	uality Audit Core/Elective/	Credits						
~			Soft Skill	010000						
IV Sem		Basics of Pharmaceutical Sciences and Quality Audit		2						
Learning	On completion	of this course the students will be able	to							
objectives	·	in the quality of the finished product and		ion to						
objectives		ts market launch.	a minung nes vandaa							
	2. To gain kr	nowledge about ICH guidelines, i.e., the	organization that s	ets and						
	governs the laws and rules for all the quality tests									
	-	direct control on the quality of the form	ulation and assurin	g the						
Title of the		e of standards								
Course:	Dasics of Flia	rmaceutical Sciences and Quality A	Audit							
Credits:	2									
creats.	2									
Course		nd the principles and types of pharma	aceutics							
Objectives		the concept of pharmacology	به به مر							
		stand the fundamental aspects of pha	rmaceutical produ	lct						
	developm 4 Evaluate	the quality of various process and fac	tors influencing	the stability						
	of produc		tors influencing	the stability						
	-	give a quality assurance and control	process involvin	g						
		tation, regulatory and other aspects in	•	•						
		Units	•							
I	Introduction to	pharmaceutical sciences, principles and	types of pharmace	utical dosage						
1		uid, semi-solids, aerosols. Routes of dru	** *							
II	Basics of pharm		6							
	· · · · · ·	ces of drugs, routes of drug administration	on, Pharmacokinet	ics-						
		ribution, metabolism and excretion, Pha								
	reactions, Drug									
III		product development: (9 h)								
		pects, pharmaceutical excipients, biopha								
	<u> </u>	lubilization, dissolution, partition coeffic	cient, ionization an	d						
IV	bioavailability.	ug stability: (9 h)								
1 V		t of physical and chemical stability of pl	narmaceutical prod	uct factors						
	· · · · · · · · · · · · · · · · · · ·	tability, Degradation rate constant, Half-								
		g, Introduction to ICH guidelines, Accel								
V	Quality Audit (<u> </u>							
	· · ·	tandard Operating Procedure (SOP), Int	ernational Confere	nce						
	Harmonization	(ICH), ISO-9000, ISO14000, WHO spec	cifications, USFDA	A guidelines						
	and ICMR.									
		zhaider. (2011).Pharmaceutical Maste	er Validation Plan	n: The						
Texts		Guide to FDA	(* 1							
		rry, Robert A Nash (2013), Pharmace	eutical process va	lidation, 3rd						
		on.Marcel Dekker	riana, Ctandarda I	Dort A E:fth						
		Assurance of Aseptic Preparation Servalison M Beaney, Royal Pharmaceuti								
		eutical Quality Assurance Committee	•							
		for quality and performance excellen		lames						
1	00	William M.Lindsay South-western C								

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	3	2	3	3	3
CO2	2	3	2	3	3	3	2	3	2	2
CO3	2	2	2	3	3	3	2	2	2	2
CO4	2	3	2	3	3	3	2	3	2	3
CO5	2	2	2	3	3	3	2	2	3	3

Strong - 3, Medium – 2, Low - 1

Mapping with Programme Specific Outcomes

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	3	2	2	3
CO2	2	3	2	2	3
CO3	3	2	2	2	3
CO4	2	3	2	2	3
CO5	3	3	2	2	3
Weightage	12	14	10	10	15
Weighted percentage (rounded of) Course Contribution to Pos	3	3	2	2	3

Strong - 3, Medium – 2, Low - 1

PROJECT (7 credit)

3 20 3 20 3 20